HP E4310A, EGOOOA,
EG6053A, E6058A, E6GOGOA:

OTDRs

Programming Guide

Notices

This document contains proprie-
tary information that is protected
by copyright. All rights are
reserved.

No part of this document may be
photocopied, reproduced, or
translated to another language
without the prior written consent
of Hewlett-Packard GmbH.

0 Copyright 1998, 1999 by:
Hewlett-Packard GmbH
Herrenberger Str. 130
71034 Boblingen

Germany

Subject Matter

The information in this docu-
ment is subject to change with-
out notice.

Hewlett-Packard makes no war-
ranty of any kind with regard to
this printed material, including,
but not limited to, the implied
warranties of merchantability
and fitness for a particular pur-
pose.

Hewlett-Packard shall not be lia-
ble for errors contained herein or
for incidental or consequential
damages in connection with the
furnishing, performance, or use
of this material.

Printing History

New editions are complete revi-
sions of the guide reflecting
alterations in the functionality of
the instrument. Updates are
occasionally made to the guide
between editions. The date on
the title page changes when an
updated guide is published. To
find out the current revision of
the guide, or to purchase an
updated guide, contact your
Hewlett-Packard representative.

Control Serial Number: First
Edition applies directly to all
instruments.

Warranty

This Hewlett-Packard instrument
product is warranted against
defects in material and work-
manship for a period of one year
from date of shipment. During
the warranty period, HP will, at
its option, either repair or replace
products that prove to be defec-
tive.

For warranty service or repair,
this product must be returned to
a service facility designated by
HP. Buyer shall prepay shipping
charges to HP and HP shall pay
shipping charges to return the
product to Buyer. However,
Buyer shall pay all shipping
charges, duties, and taxes for
products returned to HP from
another country.

HP warrants that its software and
firmware designated by HP for
use with an instrument will exe-
cute its programming instruc-
tions when properly installed on
that instrument. HP does not
warrant that the operation of the
instrument, software, or
firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not
apply to defects resulting from
improper or inadequate mainte-
nance by Buyer, Buyer-supplied
software or interfacing, unau-
thorized modification or misuse,
operation outside of the environ-
mental specifications for the
product, or improper site prepa-
ration or maintenance.

No other warranty is expressed
or implied. Hewlett-Packard spe-
cifically disclaims the implied
warranties of Merchantability
and Fitness for a Particular Pur-
pose.

Exclusive Remedies

The remedies provided herein
are Buyer’s sole and exclusive
remedies. Hewlett-Packard shall

not be liable for any direct, indi-
rect, special, incidental, or con-
sequential damages whether
based on contract, tort, or any
other legal theory.

Assistance

Product maintenance agreements
and other customer assistance
agreements are available for
Hewlett-Packard products. For
any assistance contact your near-
est Hewlett-Packard Sales and
Service Office.

Certification

Hewlett-Packard Company certi-
fies that this product met its pub-
lished specifications at the time
of shipment from the factory.

Hewlett-Packard further certifies
that its calibration measurements
are traceable to the United States
National Institute of Standards
and Technology, NIST (for-
merly the United States National
Bureau of Standards, NBS) to
the extent allowed by the Insti-
tutes’s calibration facility, and to
the calibration facilities of other
International Standards Organi-
zation members.

1ISO 9001 Certification

Produced to ISO 9001 interna-
tional quality system standard as
part of our objective of continu-
ally increasing customer satis-
faction through improved
process control.

Second Edition

E1098 October 1998
E0599 May 1999

E4310-91016

First Edition: E0298, February
1998

Hewlett-Packard GmbH
Herrenberger Str. 130
71034 Boblingen

Federal Republic of Germany

HP E4310A, E6000A, E6053A, E6058A, E6060A:
OTDRs

Programming Guide

Front Matter

In this Manual

This manual contains information about SCPI commands which
can be used to program all HP Optical Time Domain Reflectometer.
Instruments affected are:

* HP E4310A (8147A) OTDR
* HP E6000A Mini-OTDR
* HP E6053A, E6058A and E6060A Rack OTDRs.

Most SCPI commands can be used with all OTDRs, but a few are
only applicable to particular instruments, or have slightly different
names. For example, commands which may also be used with
different Mini-OTDR submodules have an extra number in their
name, indicating which submodule is affected.

Each command definition contains text showing which instrument
is affected. A command which affects “All” can be used with all the
instruments listed above.

The Structure of this Manual
This manual is divided into 4 parts:

« Chapter 1 gives a general introduction to SCPI programming
with OTDRs.

* Chapter 2 lists the OTDR-specific SCPI commands.

« Chapters 3 to 5 give fuller explanations and examples of the
OTDR-specific commands.

« Chapter 6 gives some example programs showing how the SCPI
commands can be used with OTDRs.

In addition, there is an appendix containing information about the
HP VEE driver.

Front Matter

Conventions used in this Manual

« All commands and typed text is written in Courier font, for
examplelNIT[:IMM][:ALL].

e SCPI commands are written in mixed case: text that you MUST
printis written in capitals; text which is helpful but nor necessary
is written in lower case.

So, the commantNITiate[:IMMediate][:ALL] can
be entered either asit[:imm][:all] , or as
initiate[:immediate][:all] . It does not matter

whether you enter text using capitals or lower-case letters.

* SCPI commands often contain extra arguments in square
brackets. These arguments may be helpful, but they need not be
entered.

So, the commantNITiate[:IMMediate][:ALL] can
be entered agit orinitiate

¢ A SCPI command which can be either a command or a query is
appended with the tex? .
S0,SYSTem:SET/? refers to both the command
SYSTem:SETand the querYSTem:SET?.

Front Matter

Related Manuals

You can find more information about the instruments covered by
this manual in the following manuals:

« HP 8147A Optical Time Domain Reflectometer User’'s Guide
(HP Product Number E4310-91011).

e HP E6000A Mini-OTDR User’s Guidg&lP Product Number
E6000-91011)

« HP E6053A, E6058A and E6060A Rack OTDR User's Guide
(HP Product Number E6050-91011).

NOTE Please note that these User Guides no longer contain programming
information, and must now be used in conjunction with this manual.

If you are not familiar with the HP-IB, then refer to the following
books:

* HP publication 5952-015@,utorial Description of HP-1B

« ANSI/IEEE-488.1-1978lEEE Standard Digital Interface for
Programmable Instrumentatipand ANSI/IEEE-488.2-1987,
IEEE Standard Codes, Formats, and Common Commands
published by the Institute of Electrical and Electronic Engineers.

In addition, the commands not from the IEEE 488.2 standard are
defined according to the Standard Commands for Programmable
Instruments (SCPI). For an introduction to SCPI and SCPI
programming techniques, refer to the following documents:

« Hewlett-Packard Press (Addison-Wesley Publishing Company,
Inc.): A Beginners Guide to SCBY Barry Eppler.

e The SCPI ConsortiunBtandard Commands for Programmable
Instrumentspublished periodically by various publishers. To
obtain a copy of this manual, contact your Hewlett-Packard
representative.

Table of Contents

INthIS MaNUAIceeviiieeeii e 4
The Structure of this Manualccoovvviciciccceeen, 4
Conventions used in this Manualccccoeccciviieeeeeeeeennn. 5
Related Manualscoeuviiiiiiiiiiiiiiieie e, 6

1 Introduction to Programming

1.1 Command MESSAJESccevveeeeeeeeeeeieeeeeeeeeeen 17
UNIES Lot 17
TrACE AITAY o 18
D= = S 18
Message EXChange ..o 18
The INPUL QUEUEooiiiiiiiiie it 19
The OUutPUt QUEUEeeiiiiiiieieie e 19
The Error QUEUEcovviieeeeie ittt er e e e 19

1.2 Common CoOmMmMAaNASceveeiiiiiiieeeeeeeeeeeeeeeeeennnennns 20
Common Command SUMMAIYccooririeeeriiiiieeeeinineeeennaes 21
Common Status Informationccccceeeiviiiieniniiieee e 22

1.3 HP OTDR Status Modeliiiiiiiiiiiieeeeeee, 23
ANNOLALIONS ...oeviiiiiiiiiciie e 25
Standard Event Status Registercccovvvveveeeeeiiiniicciiiineen, 25
Operation/Questionable Statusccccccccvveeeeeiiiiiiiiiee, 26
Operation StatUSccccviiiieiiiee e 26
Questionable StatuSeeeeviieeeiiiiiiii e 26
Status Command SUMMANYccooeiiiiiiereeeee e 27
Mini-OTDR and Rack OTDR Bit Tablecccccevvvvvnnne. 28
Mainframe OTDR Bit Tablecccccoovcieviiiiiiiiee e 28
Other Commandsooooeiiiiiiiii 29

Table of Contents
2 Specific Commands

2.1 Specific Command Summaryccccceeeeeeeeeeenenn. 33

3 Instrument Setup and Status

3.1 IEEE-Common Commandscccceveeeeeeeeeeeeennnns 45
3.2 Status Reporting — The STATus Subsystem 56

3.3 Interface/Instrument Behaviour Settings — The SYS-
Tem SUbSYSIEM ... 61

4 Operations on Traces and Measurements

4.1 Root Layer Commandsccccuvvvvmmmiiiiiiieiieeeeeeenn. 79

4. PlayingWittDataThePROGramandCALCulateSubsystems
83

4.3 Measurement Functions — The SENSe Subsystem 89
4.4 Signal Generation — The SOURce Subsystem 100
4.5 Trace Data Access — The TRACe Subsystem 110

5 Mass Storage, Display, and Print Functions

5.1 Display Operations — The DISPlay Subsystem ... 123

Table of Contents

5.2 Print Operations — The HCOPy Subsystem 130
5.3 File Operations — The MMEMory Subsystem 137

6 Programming Examples

6.1 How to Connect your OTDR to a PC 147
How to set the Instrument Configurationccccceeee..n. 148
6.2 How to Connect with a Terminal Program 150
6.3 Using a Program to Connect to the OTDR 151
6.4 How to Send Commands and Queries 152
COMMANGS .. srree e e 152
QUETIES .ttt ettt e e e e e e s eee e 153
BIOCKS transfercvvvviiiiiiie e 153
6.5 CommON TaskKSoooviiiiiiiiiieie e, 154
How to Initialize the Instrumentcccccceevieeee v, 154
How to Set Up an OTDR Measurementccccceeeeeeeeennn. 155
How to Run a Measurementccoooevvevviiieeiieeiiiinneeeeeenenn, 155

HOW t0 SCAN @ TraCecvviiiiii it 156

HOW t0 Process a Traceccooeeviiiiiiiiiiiiiiieeeeeeiie e, 156
How to Upload a Bellcore File from the current trace 156
6.6 Advanced TOPICScovvieriiiiiiiieceececee e 157
How to Download a Bellcore Fileccccccevvviiiiieeiiiiiennnns 157
How to Use the Power Meter and Source Mode 158
How to Store Traces on Other Devicescccccveevivieeeennns 158
6.7 SCPI data transfer between PC and OTDR 159

Table of Contents
A The VEE Driver

AL WhatisSHP VEE ? ..o 165
Using the RS232 POrtoocvveiieiiiiieeeee e 165
A.2 How to Install HP VEEcccooiiiiiiiiiiiiiieceen 166
A.3 Features of the HP OTDR VEE Driver 169
A.4 Directory StruCtUreovvvvvviiiieiiieeeeeeeeeeeeeeeeennns 170
A.5 Opening an Instrument Sessioncccccvvveneen. 170
A.6 Closing an Instrument Sessionevvvevennnnnn. 171

A.7 VISA Data Types and Selected Constant Definitions
172

A.8 Error Handlingouvviiiiiiiiiiieeceeeceeeen 172
A.9 Introduction to Programmingccceeeeeeeeeeennn. 173
Selecting FUNCLIONSooooiiiiiieee e 173
Example Programs ... 174
LADVIBW ..ot 174
LabWINAOWScooiiiiiiiiiiiieeeee e 175
A.10 VISA-specific informationcccccvvvvrnnnnnnn. 175
INStrument AddreSSESovveeiiieeiiiee e 175
CallDACKS ..ooviiieeeiie e 176
A.11 Using the HP OTDR VEE Driver in Application De-
velopment ENvironmentsccccceeeevveeeeeeeeieeeeeeiiininnns 176
2/I7i(érosoftVisualC++4.0(orhigher) andBorland C++4.5(orhigher)
Microsoft Visual Basic 4.0 (or higher)ccccceeviiieennnne 176
HP VEE 3.2 (or higher)euviiieees 177
LabWindows CVI/ (R) 4.0 (or higher)cccccevvviiennnnnn. 177
A.12 Online informationccccooovveiiiiiiiiiiiieee 178

10

List of Figures

Figure 1-1 Common StatuS REQISTEISuviiiiiiiiiiiiiiiiee et 22
Figure 6-1 Instrument configuration - example...........cccccoi . 149
Figure 6-2 Connection check - eXxamplecccccoii 151
Figure 6-3 QUENY - EXAMPIEc.ouiiiiii i e e e e e e e e e e eeneaaa 153
Figure 6-4 Blocks transfer - eXample....... ... 154
Figure 6-5 Uploading a Bellcore file - exampleccoeveeeiiiiiiiiiieeeeeen 157
Figure A-1 VXIPIUG&PIAY WINAOW.ccceiiiiiiiiiiiiieeee et 167
Figure A-2 HP VEE - Install OptioNS........ccooiiiiii i 168

11

List of Figures

12

List of Tables

Table 1-1 Common CommanNd SUMIMATYcceueeiiiiirmririeeeeeaaaiiiireeeeeessssireseeeeeeesaans 21
Table 2-1 Specific Command SUMMATYcccccoiiiiiiiie e 34
Table 6-1 Cable configuration for connectionto a PCccooovviviiiiiiiiiiiiii, 147
Table 6-2 TranSMISSION PArAMELEISuuuuii e e e e e e e e e e e e e e 150

13

List of Tables

14

Introduction to
Programming

Introduction to
Programming

This chapter introduces some background information that may
help you when programming OTDRs. You can find general
information about SCPI commands here, and lists and descriptions
of some useful IEEE standard common commands.

16

Introduction to Programming
Command Messages

1.1 Command Messages

A command message is a message from the controller to the
OTDR. The following are a few points about command messages:

« Either upper-case or lower-case characters can be used.

« The parts in upper-case characters in the command descriptions
must be given. The parts in lower-case characters can also be
given, but they are optional.

e The parts in brackets [] in the command description can be
given, but they are optional.

* In the syntax descriptions the characters between angled
brackets (<...>) show the kind of data that you require. You do
not type these brackets in the actual command. “<wsp>" stands
for a white space character.

* A command message is ended by a line feed character (LF) or
<CR><LF>.

« Several commands can be sent in a single message. Each
command must be separated from the next one by a semicolon

Units

Where units are given with a command, usually only the base units
are specified. The full sets of units are given in the table below.

Unit Default Allowed Mnemonics
meters M NM, UM, MM, M, KM
miles Ml Miles

feet FT FT, KFT

decibel DB MDB, DB

second S NS, US, MS, S

The default unit of length is usually mm.

17

Introduction to Programming
Command Messages

Trace Array

The Mini-OTDR and Rack OTDR can load up to two traces into
their memory. The Mainframe OTDR can load up to four traces.
These traces form a trace array. One of the entries in this array is
always the current entry. Most operations work on this entry.

Data

With the commands you give parameters to the OTDR and receive
response values from the OTDR. Unless explicitly noticed these
data are given in ASCII format (in fact, only the trace data are given
in binary format). The following types of data are used:

* Booleandata may only have the values O or 1.

« Data of typeshort may have values between -32768 and 32767.
When the OTDR returns a short value, it always explicitly gives
the sign.

» Float variables may be given in decimal or exponential writing
(0.123 or 123E-3).

» A string is contained between a " at the start and at the end or a
'at the start and at the end. When the OTDR returns a string, it is
always included in " " and terminated by <END>.

* When aregister value is given or returned (for example *ESE),
the decimal values for the single bits are added. For example, a
value of nine means that bit 0 and bit 3 are set.

« Larger blocks of data are givenBimary Blocks, preceded by
“#HLerNumbytes”, terminated by <END*Lenrepresents the
length of the Numbytes block. For example:
#16TRACES<END>.

Message Exchange

The OTDR exchanges messages using an input and an output
queue. Error messages are kept in a separate error queue.

18

Introduction to Programming
Command Messages

The Input Queue

The input queue is a FIFO queue (first-in first-out). Incoming bytes
are stored in the input queue as follows:

* Receiving a byte:
e Clears the output queue.
e Clears Bit 7 (MSB).

« No modification is made inside strings or binary blocks.

Outside strings and binary blocks, the following modifications
are made:

» Lower-case characters are converted to upper-case.
+ Two or more blanks are truncated to one.

« The parser is started if the LF character is received or if the input
queue is full.

Clearing the Input Queue

Switching the power off causes commands that are in the input
gueue, but have not been executed to be lost.

The Output Queue

The output queue contains responses to query messages. The
OTDR transmits any data from the output queue immediately.

On the Mainframe OTDR, each response message ends with a
carriage return (CR, OR) and a LF (0Ag), with EOI=TRUE. If no
query is received, or if the query has an error, the output queue
remains empty.

The Error Queue

The error queue is 30 errors long. It is a FIFO queue (first-in first-
out). That is, the first error read is the first error to have occurred.

If more than 29 errors are put into the queue, the message '-350,
"Queue overflow" ' is placed as the last message in the queue. The
gueue continues to work, but now with only the first 29 positions.

19

Introduction to Programming
Common Commands

The oldest error message in the queue is discarded each time a new
error message added.

1.2 Common Commands

The IEEE 488.2 standard has a list of reserved commands, called
common commands. Some of these commands must be
implemented by any instrument using the standard, others are
optional. The OTDR implements all the necessary commands, and
some optional ones. This section describes the implemented
commands.

20

Introduction to Programming
Common Commands

Common Command Summary

Table 1-1gives a summary of the common commands.

Table 1-1 Common Command Summary
Command Parameter Function
*CLS Clear Status Command
*ESE Standard Event Status Enable Command
*ESE? Standard Event Status Enable Query
*ESR? Standard Event Status Register Query
*ETY Reset defaults and reboot
(Rack OTDR and Mini-OTDR only)
*IDN? Identification Query
*LRN? Read instrument settings
*OPC? Operation Complete Query
*OPT? Options Query
*RCL <location> Recall Instrument Setting
*RST Reset Command
*SAV <location> Save Instrument Setting
*STB? Read Status Byte Query
*TST? Self Test Query
*WAI Wait Command
NOTE These commands are described in more detail in “lIEEE-Common

Commands” on page 45

21

Introduction to Programming
Common Commands

Common Status Information

There are four registers for the status information. Two of these are
status-registers and two are enable-registers. These registers
conform to the IEEE Standard 488.2-1987. You can find further
descriptions of these registers under *ESE, *ESR?, *SRE, and
*STB?. The following figure shows how the registers are organized.

Laser Aotivy 07 0

et !

|2 | S 2

Qu Status 19 7 & 3

Messages Available 4] 3 4

15 | & 5

> Master Summary Status ———*| 6 | 5

Operation Status 7] \ED‘* 7

Status Byte Service Request
Enable Register
Operation Gomplete —————= 0 | & \ 0
Request Contvolg‘ii—’@/]\ 1
Query Error 12 | & 2
Device Dependant Error ———aml 3 & 3
Execution Error Z & 4
Command Error — |5 | & 5
User Request 16 | @7 3
Power On 7 | @)« 7
Event Status Event Slatus
Register Enable Register
Figure 1-1 Common Status Registers

* The questionable and operation status command trees are
described in “Status Reporting — The STATus Subsystem” on
page 56.

ATTENTION Unused bits in any of the registers return 0 when
you read them.

For information about the status model, see “Status Reporting —
The STATus Subsystem” on page 56

22

Introduction to Programming
HP OTDR Status Model

1.3 HP OTDR Status Model

The following figure describes the relevant bit patterns and their
relationship of the SCPI status/error model

23

Introduction to Programming
HP OTDR Status Model

Status Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | BitO

Byte OperatMaster ESR | MAV |Questfunusetlinused_aser
StatugSummSumm|. Status Active

Standard Evenl
Status Enable

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | BitO Standard Event

Power| *User | Cmd | Exec |DevDep Query| *Req |Operat| gat

On [Request Error | Error | Error | Error |Control Compl us Register

Operation Questionable
Enable Status Status Enable
0, *unused 0, *unused
1, *unused 1, *unused
2, *unused 2, *unused

3, *unused '> 3, power warn

4, meas runnimﬂ' 4, *unused

5, *unused 5, *unused

6, *unused 6, *unused
3 r" 7, *unused 7, *unused !.!
8, scan running" 8, *unused
9, printing 4 9, *unused

()

10, *unused 10, *unused
11, *unused 11, *unused
12, *unused 12, *unused
13, *unused 13, *unused

14, *unused | =< 14, cmd. warn

15, *unused 15, *unused

EVENTt <- CONDition CONDition -> EVENt

24

Introduction to Programming

HP

OTDR Status Model

Bits marked with * are not used and therefore always setThe
few used bits in the operation are marked with arrows, as are the
guestionable status registers.

An

notations

Status Byte:

Bit O is set any time the laser is on (measurement running)
Bits 1 and Bit 2 are unused (0)

Bit 3 is built from the questionable status event register and its
enable mask.

Bit 4 (MAV) is generally 0.
Bit 5 is built from the SESR and its SESE.

Bit 6 is always 0 because the SRE mask is always 0 (no service
request).

Bit 7 is built from the operation status and its enable mask.

Standard Event Status Register

Bit O is set if an operation complete event has been received since
the last call t6dESR?.

Bit 1 is always 0 (no service request).

Bit 2 is set if a query error has been detected.

Bit 3 is set if a device dependent error has been detected.
Bit 4 is set if an execution error has been detected.

Bit 5 is set if a command error has been detected.

Bit 6 is always 0 (no service request).

Bit 7 is set for the first call 6ESR after Power On.

25

Introduction to Programming
HP OTDR Status Model

Operation/Questionable Status

The Operation/Questionable Status consists of a condition and
an event register.

A "rising" bit in the condition register is copied to the event
register.

A"falling" bit in the condition register has no effect on the event
register.

Reading the condition register is non-destructive.
Reading the event register is destructive.

A summary of the event register and its enable mask is set in the
status byte.

Operation Status

Bit 4 is set if a measurement is running, and reset when the
measurement is stopped.

Bit 8 is set if the scan trace is running, and reset when the scan
trace is stopped.

Bit 9 is set if a printout has been started, and reset when the
printout is finished or cancelled.

All other bits are unused, and therefore set to 0.

Questionable Status

Bit 3 is set if a weak power supply has been detected (DC supply,
battery low).

Bit 14 is set if a questionable command has been received (for
example, starting the scan trace or printout with no valid trace
data).

All other bits are unused, and therefore set to 0.

26

Introduction to Programming
HP OTDR Status Model

Status Command Summary

*STB?
*ESE

*ESE?
*ESR?
*OPC?

*CLS

*RST

*TST?

returns status byte, value 0 .. +255

sets the standard event status enable register, parameter 0 .. +255
returns SESE, value 0 .. +255

returns the standard event status register, value 0 .. +255

returns 1 if all operations (scan trace printout, measurement) are
completed. Otherwise it returns O.

clears the status byte and SESR, and removes any entries from the error
gueue.

clears the error queue, loads the default setting, and restarts
communication.

NOTE: *RST does NOT touch the STB or SESR. A running
measurement is stopped.

initiates an instrument selftest and returns the results as a 32 bit LONG.
If a measurement is running, the status of the latest selftest is returned
and an error is set. +0 means "passed". The bits of the 32 bit long
integer have the following meaning:

27

Introduction to Programming

HP OTDR Status Model

Mini-OTDR and Rack OTDR Bit Table

<emmmee- Overall State - "0" means passed, "1" means ST failed or not tested -
Bit 31 |Bit 30 |Bit 29 |Bit 28 |Bit 27 |Bit 26 |Bit 25 |Bit 24 |Bit 23 |Bit 22 [Bit 21 | Bit 20 | Bit 19 Bits 18 .. 16
ST- | Main- | Video | Batt | RTC | SMC |[Check | Power | Flash |Floppy | DAP | Sub- [Module Unused
Error | frame | State | State | State | State | Sum 6V State | State | State |Module| State
State State | State State
Bits 15.. 8 Bits 7..0
Submodule Error Module Error
e Error code < Error code -----------------
Mainframe OTDR Bit Table
Bit 31 Bits 30 .. 26 Bit 25 | Bit 24
Selftest unused Module | IBI-test
ERROR Init failed
failed
MSW: . . - - - - - -
Bit 23 | Bit 22 | Bit 21 | Bit 20 | Bit 19 | Bit 18 | Bit 17 | Bit 16
FATAL |[ST non-| analog | digital | MOD LAS | APD-L | APD-H
ST-Error| fatal summ | summ | Temp. | Temp. | Temp. | Temp.
Error
Bit 15 | Bit 14 |Bit 13 |Bit 12 |Bit 11 |Bit 10 | Bit9 | Bit 8
APD- | RCV- | OFFS | OFFS | OFFS | RMS RMS RMS
LSW: HV OFFS | HILIN | Higain | Logain | HILIN | Higain | Logain
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1l | Bit0
notused DAP- | DSP- | CAL- | LOG- | SHOT- | DAP- | DSP-
ALU Code Data | Table | RAM RAM RAM

28

Introduction to Programming
HP OTDR Status Model

Other Commands

*RCL recalls a pre-defined setting.
This is the same as “*RCL”" on page 21, except that it is read from a
harddisk.

*SAV stores the current setting.
This is the same as “*SAV” on page 21, except that it is stored on a
harddisk.

*OPT? returns a string containing the installed options:
<FLOPPY opt>, <COLOR opt>.
For example, *OPT?2. FLOPPY, 0
An uninstalled option returns 0.

*WAI causes the remote control part of the instrument to wait for at least 2
seconds before continuing to parse commands. This gives the
instrument a chance to accomplish pending tasks.

The instrument returns to receiving commands after 2 seconds, or the
completion of a printout or scan trace or a limited measurement time
(averaging time > 0).

NOTE: During a running measurement *WAI does NOT wait for the
scan trace to finish as it runs continuously.

*IDN? is an identification string, like “*LRN?" on page 21.
*FTY resets the defaults and reboot
(Rack OTDR and Mini-OTDR only)

29

Introduction to Programming
HP OTDR Status Model

30

Specific Commands

Specific Commands

This chapter gives information about the HP OTDR remote
commands. It lists all the remote commands relating to OTDRs,
with a single-line description.

Each of these summaries contains a page reference for more
detailed information about the particular command later in this
manual.

32

Specific Commands
Specific Command Summary

2.1 Specific Command Summary

The commands are ordered in a command tree. Every command
belongs to a node in this tree.

The root nodes are also called the subsystems. A subsystem
contains all commands belonging to a specific topic. In a subsystem
there may be further subnodes.

All the nodes have to be given with a command. For example in the
commanchcop:item:all

« HCOPyis the subsystem containing all commands for
controlling the print out,

« |ITEM is the subnode that provides selecting what should be
printed,

e ALL is the command selecting everything for the print out.

NOTE If a command and a query are both available, the command ends .

So,disp:brig/? means thatdisp:brig and disp:brig? are
both available.

Table 2-1 gives an overview of the command tree. You see the
nodes, the subnodes, and the included commands.

33

Specific Commands
Specific Command Summary

Command Description Page
ABORLt[1/2] Stops a running measurement. 79
CALCulate:MATH:EXPRession

:NAME? Allows calculating loss and attenuation values. 86

‘REFLex? Calculates Reflectance. 87

:SPLice? Calculates Splice Loss. 87

‘TYPE/? Sets/queries whether Reflection Height or Reflectance is88

used.
DISPLay

:BRIGhtness/? Changes or queries the current LCD brightness. 123

:CONTrast/? Changes or queries the current LCD contrast. 123

:ENABIe/? Enables, disables, or checks the internal LCD. 124
DISPLay[:WINDow]:GRAPhics

:COLor/? Changes or queries the trace color. 125

LTYPe/? Changes or queries the trace linestyle. 125
DISPLay[:WINDow]:TEXT

:DATA/? Sets or requests a comment. 126
DISPLay[:WINDow]:X

:SCALe/? Changes or queries the zooming mode (full trace or zooh27
DISPLay[:WINDow]:X[:SCALe]

:PDlIVision/? Changes or queries the scaling of the X-axis. 128
DISPLay[:WINDow]:Y[:SCALe]

:PDlIVision/? Changes or queries the scaling of the Y-axis. 129
FETCh[:SCALar]

:POWer[:DC]? Reads current power meter value (triggers a measuremermf).

Table 2-1 Specific Command Summary

34

Specific Commands
Specific Command Summary

Command Description Page
HCOPy

:ABORt Cancels the current print job. 130

:DESTination/? Changes or queries the active printer. 130

[:IMMediate] Immediately starts printing everything selected. 131
HCOPy:ITEM

:ALL[:IMMediate] Start printing everything. 132
HCOPyY:ITEM[:WINDow]

[:IMMediate] Immediately starts printing the parameter window. 132

:STATe/? Enables or queries printing the parameter window. 132
HCOPy:ITEM[:WINDow]: TEXT

[:IMMediate] Immediately starts printing the event table. 133

:STATe/? Enables or queries printing the event table. 133
HCOPyY:ITEM[:WINDow]:TRACe

[:IMMediate] Immediately starts printing the trace. 134

:STATe/? Enables or queries printing the trace. 133
HCOPy:ITEM[:WINDow]: TRACe:GRATicule

:STATe/? Enables or queries printing the trace window grid. 135
HCOPy:PAGE

:SIZE/? Selects or queries the size of the paper. 136
INITiate[1][:IMMediate]

[:ALL] Starts a measurement. 80
INITiate2 Starts a power meter measurement. 80

:CONTinuous/? Starts or Queries a single/continuous power meter 80

measurement.
KEYBoard Allows the use of a terminal as an external keyboard 81
Table 2-1 Specific Command Summary, continued

35

Specific Commands
Specific Command Summary

Command Description Page
MMEMory

:CATalog? Returns contents of current directory. 137

:CDIRectory/? Changes or queries the current directory. 138

:DELete Deletes a file. 138

:FREE Reclaims free space. 139

:FREE? Returns the amount of free space and the amount used 139

:INITialize Formats the specified storage device 139

:MDIRectory Creates a directory on the current storage device. 140

:MSIS/? Changes or queries the current storage device. 141

:NAME/? Changes or queries the name of the current trace. 141
MMEMory:COPY

:FILE Copies a file to a new name/device 138
MMEMory:LOAD

:FILE? Returns a Bellcore binary file. 140

:STATe Loads a settings file. 140

:TRACe Loads a trace file. 140
MMEMory:SAVE

:FILE Downloads a Bellcore binary file 142
MMEMory:.STORe

:STATe Saves a settings file. 142

:TRACe Saves a trace file. 142

:TRACe:REVision/? Sets or requests the Bellcore file revision used. 142
PROGram:EXPLicit

:CHECK:LIMiIt/? Sets or queries the Trace Checker limits 83

:EXECute Executes a special task. 84

Table 2-1 Specific Command Summary, continued

36

Specific Commands
Specific Command Summary

Command Description Page

:NUMBer/? Sets or requests the threshold in mdB 85

:STATe/? Controls a running task. 85
READ[:SCALar]

:POWer[:DC]? Reads current power meter value (no measurement triggeg2d).
SENSe:AVERage

:COUNt/? Sets or queries the current averaging time. 89
SENSe:AVERage:COUNt

:NUMBer/? Sets or queries the number of averages for measuremen@0
SENSe:DETector

[:FUNCtion]/? Sets or queries the current measurement mode. 91

[:FUNCtion:]JAUTO/? Enables or checks the auto mode. 92

[:FUNCtion:]OPTimize/? Sets or queries the optimization mode. 92

:MODE/? Sets or returns the current Mini-OTDR mode 93
SENSe:DETector:SAMPle

:DISTance? Returns the current sample distance. 94
SENSe:FIBer

:REFRindex/? Sets or returns the current refractive index. 94

:SCATtercoeff/? Sets or returns the current scatter coefficient. 95

- TYPE? Returns the current fiber type. 95
SENSe:POWer

:FREQuency? Queries the detected power meter input frequency 96

:REFerence/? Sets or Queries the power meter reference value. 96

:UNIT/? Sets or Queries the power meter power units. 98

‘WAVelength/? Sets or Queries the power meter wavelength. 98

SENSe:POWer:REFerence

Table 2-1 Specific Command Summary, continued

37

Specific Commands
Specific Command Summary

Command Description Page
:DISPlay Takes current power meter value as reference value. 97
:STATe/? Sets or Queries type of power meter display (relative or 97
absolute).
[SOURce:]
HOFFset/? Sets or returns the horizontal offset 101
WAVelength[1/2][:CW]/? Sets or returns the current wavelength. 108
[SOURce:]AM[:INTERNAL]
:FREQuency[1/2]/? Sets or returns frequency of chosen source. 100
[SOURce:]MARKer1/2/3
:POINt/? Sets or returns the position of the marker. 102
[:STATe]/? Activates, disables, or checks the marker. 103
SOURce:POWer
:STATe[1/2] Switches the laser of the chosen source on or off. 104
:STATE[1/2]? Queries the state of the chosen source. 104
[SOURce:]PULSe
:WIDTh/? Sets or returns the pulsewidth. 104
‘WIDTh:LLIMit? Returns the lower limit of the measurement hardware. 105
:WIDTh:ULIMit? Returns the upper limit of the measurement hardware. 105
[SOURce:]RANGe
:LUNit/? Sets or returns the current length unit. 106
:SPAN/? Sets or returns the current measurement span. 106
:STARt/? Sets or returns the current measurement start. 107
[SOURce:]WAVelength[1/2][:CW]
AVAilable? Returns the available wavelength(s) 109
STATus
Table 2-1 Specific Command Summary, continued

38

Specific Commands
Specific Command Summary

Command Description Page
:PRESet Presets all registers and queues. 58
STATus:OPERation
[:EVEN(]? Returns the event register. 56
:CONDition? Returns the condition register. 56
:ENABIe/? Sets or queries the enable mask for the event register. 56
STATus:POWer
:ACDC? Queries how the battery is powered. 57
:CAPacity? Returns the power capacity of the battery. 57
:CURRent? Returns the current of the battery in mA. 58
:REMain? Returns the operating time in minutes. 58
STATus:QUEStionable
[:EVENTt]? Returns the event register. 59
:CONDition? Returns the condition register. 59
:ENABIe/? Sets or queries the enable mask for the event register. 59
SYSTem
:BRIDge Passes communication from serial port 1 to serial port 2 61
:DATE/? Sets or returns the OTDR'’s internal date. 69
:ERRor? Returns the contents of the OTDR’s error queue. 70
‘HELP? Returns a Help page on a specified topic 70
KEY/? Simulates or Returns a key stroke on the OTDR’s front pangl.
:PRESet Loads a predefined instrument setting. 73
SET/? Sets or returns the current setting 73
TIME/? Sets or returns the OTDR'’s internal time. 74
:UPTime? Returns the time (in seconds) run on the OTDR 74
:VERSion? Returns the OTDR’s SCPI version 75
Table 2-1 Specific Command Summary, continued

39

Specific Commands
Specific Command Summary

Command Description Page
SYSTem:COMMunicate
:GPIB[:SELF]:ADDRess/?Sets or returns the OTDR’s GP/IB address. 61
SYSTem:COMMunicate:SERial
:FEED/? Sends a command or query to serial port 2 64
[:RECeive]:PORT? Returns the port used (RS232 or RS485) by the Rack OBBR
[:RECeive]:SBITS/? Sets or queries the number of stop bits. 68
SYSTem:COMMunicate:SERial[1]|2][:RECeive]
:BAUD/? Sets or queries the baud rate. 62
:BITS/? Sets or queries the number of data bits. 63
:PACE/? Sets or queries the pace for the communication. 65
:PARIty[:TYPE]/? Sends or returns the parity 66
:PARity:CHECKk/? Activates the parity. 67
TRACe
:CATalog? Returns positions and names of currently loaded traces.110
:DATA? Reads a complete trace data array. 111
:DELete Closes the current trace. 117
:DELete:ALL Closes all loaded traces. 117
:FEED:CONTrol/? Sets or queries the current trace. 117
‘FREE? Returns the number of unused trace array values. 118
:POINts Sets the number of samples for the current trace. 118
:POINts? Returns the number of data points of the current trace. 119
TRACe:DATA
:FCRetloss? Returns the Front Connector return loss 112
LINE? Reads samples 114
:TABLe? Returns an event table. 115
Table 2-1 Specific Command Summary, continued

40

Specific Commands
Specific Command Summary

Command Description Page

:TABLe:LOCK/? Sets or queries whether or not event table is locked. 115

:TORL? Returns the total optical return loss 116

:‘VALue? Returns a measured value at a sample point. 116
TRACe:DATA:CHECk

:TABLe? Returns a Trace Checker table. 111

:STATe? Queries the Trace Checker Table state. 112
TRACe:DATA:LANDmark

:ADD Adds a landmark 112

:DELete Deletes a landmark 113
TRAFficdet/? Sets/queries whether traffic detection is on or off 82

Table 2-1 Specific Command Summary, continued

41

Specific Commands
Specific Command Summary

42

Instrument Setup and
Status

Instrument Setup and
Status

This chapter gives descriptions of commands that you can use when
setting up your OTDR. The commands are split into the following

separate subsystems:
« |EEE Specific commands: which were introduced in “Common
Commands” on page 20
» :STATUS: commands which relate to the status model.

* :SYSTEM: commands which control the serial interface and
internal data.

Other commands are described in Chapter 4 “Operations on Traces
and Measurements”, and Chapter 5 “Mass Storage, Display, and

Print Functions”.

44

Instrument Setup and Status
IEEE-Common Commands

3.1 IEEE-Common Commands

“Common Commands” on page 20 gave a brief introduction to the
IEEE-common commands which can be used with OTDRs. This
section gives fuller descriptions of each of these commands.

command: *CLS
syntax: *CLS
description: The CLear Status command *CLS clears all the event registers summarized
in the Status Byte register.
Except for the output queue, all queues summarized in the Status Byte
register are emptied. The error queue is emptied.
Neither the Standard Event Status Enable register, nor the Service Request
Enable register are affected by this command.
After the *CLS command the instrument is left in the idle state. The
command does not alter the instrument setting.
parameters: none
response: none
example: LS
affects: All instruments

45

Instrument Setup and Status
IEEE-Common Commands

command: *ESE
syntax: *ESE<wsp><value>

description: The standard Event Status Enable command (*ESE) sets bits in the
Standard Event Status Enable register.
A 1in a bit in the enable register enables the corresponding bit in the
Standard Event Status register.
The register is cleared at power-on. The *RST and *CLS commands do not
affect the register.

parameters: The bit value for the registesifart or afloat):

Bit Mnemonic Decimal Value
7 (MSB) Power On 128

6 User Request 64

5 Command Error 32

4 Execution Error 16

3 Device Dependent Error 8

2 Query Error 4

1 Request Control 2

0 (LsB) Operation Complete 1

response: hone
example: *ESE 21
affects: All instruments

command: *ESE?
syntax: *ESE?
description: The standard Event Status Enable query *ESE? returns the contents of the
Standard Event Status Enable register (see *ESE for information on this
register).
parameters: none
response: The bit value for the registesifart value).
example: *ESE? - 21<END>
affects: All instruments

46

command:
syntax:
description:

parameters
response

example:
affects:

command:
syntax:
description:

parameters:
response:
example:
affects:

Instrument Setup and Status
IEEE-Common Commands

*ESR?
*ESR?
The standard Event Status Register query *ESR? returns the contents of the
Standard Event Status register. The register is cleared after being read.
none
The bit value for the registeslfart or afloat):

Bit Mnemonic Decimal Value
7 (MSB) Power On 128

6 User Request 64

5 Command Error 32

4 Execution Error 16

3 Device Dependent Error 8

2 Query Error 4

1 Request Control 2

0 (LSB) Operation Complete 1

*ESR? - 21<END>
All instruments

*FTY
*FTY
The FacTorY defaults command *FTY resets your OTDR to the factory
defaults and reboots the OTDR.
none
none
*FTY
Mini-OTDR and Rack OTDR only

47

Instrument Setup and Status
IEEE-Common Commands

command: *IDN?
syntax: *IDN?
description: The IDeNtification query *IDN? gets the instrument identification over the
interface.
parameters: none
response: The identification terminated by <END>:

HP E6000A Mini-Optical Time Domain Reflectometer Mainframe:
nnnnnnnnnnModule:mmmmmmmmmB8wW_Rewvi.j

HP: manufacturer

mmmm instrument model number (for example E6000A)
SSSSSSSS serial number

rreeeeerer firmware revision level

SW_Rewvi,| Software Revision number, for example 1.1 or 1.0

example: *IDN? - HP E6000A Mini Optical Time Domain
Reflectometer Mainframe 0123456789, Module:
ABCDE54321 SW_Rev 1.1<END>

NOTE The response from *IDN? for Rack OTDRs and Mainframe
OTDRs is respectively:

HP E60xxA Rack Optical Time Domain Reflectometer...
and
HP 8147 Optical Time Domain Reflectometer...

affects: All instruments

command: *LRN?
syntax: *LRN?
description: The LeaRN query *LRN? reads the complete instrument setting in a binary
block. The binary block can be directly stored as a setting file.
parameters: none
response: Binary block.
example: *LRN? - binblock
affects: All instruments

48

command:
syntax:
description:

parameters:
response:

example:

Instrument Setup and Status
IEEE-Common Commands

*OPC?

*OPC?
The OPeration Complete query *OPC? parses all program message units in

the input queue.

If a print, measurement or scan trace is active, *OPC? returns 0. Otherwise,

*OPC? returns 1.

The following actions cancel the *OPC? query (and put the instrument into
Operation Complete, Command Idle State):

e Power-on
« the Device Clear Active State is asserted on the interface.
« *CLS
e *RST
none

O0<ENDprint, measurement, Scan Trace actioe
1<END>
*OPC? - 1<END>

affects: All instruments

49

Instrument Setup and Status
IEEE-Common Commands

command: *OPT?
syntax: *OPT?
description: The OPTions query *OPT? gets a list of the installed options over the
interface. All three options are always listed, in the same order, separated
by commas. If an option is not installed in the instrument, 0 is sent in its
position in the list.
parameters: none
response: E4310A response:

module-typt9, DC|0, PRINTER|0, COLOR|0, HPIB|0, LAN|O

Mini-OTDR response:

module-typf, FLOPPY|0, COLOR|0, EXTFLASH|O,
submodule-typesubmodule serial j0

Rack OTDR response:

module-typf, FLOPPY|0, COLOR|0, EXTFLASH]IO,
submodule-typesubmodule serial 10 RS232|RS485

NOTE The second and third arguments for the Rack OTDR (FLOPPY
and COLOR) are included for the sake of consistency.

The Rack OTDR has no floppy option, and is always configured as
a color unit.

NOTE In this release of the Mini-OTDR and Rack OTDR, the fourth
argument (EXTFLASH) will always be 0.

example: E4310A example:
*OPT? - E4316A, DC, 0, 0, HPIB, LAN<END>
Mini-OTDR example:

*OPT? - EG6003A, FLOPPY, 0, 0, E6GOO06A :
DE13A00108<END>

Rack OTDR example:
*OPT? - EG6053A, 0, 0, 0, 0 RS485<END>
affects: All instruments

50

Instrument Setup and Status
IEEE-Common Commands

command: *RCL
syntax: *RCL<wsp><location>
description: The instrument setting is changed to one saved on the internal storage

device. Saved settings are in the fon8ET, sa*RCL 2 recalls setting
SET2.SET.

parameters: ahort value (between 0 and 5) giving the number of the setting to be
saved.
response: none
related commands *SAV
example: *RCL 3
affects: All instruments

51

Instrument Setup and Status
IEEE-Common Commands

command: *RST
syntax: *RST
description: The ReSeT command *RST sets the instrument to reset setting (standard

setting) stored in internal storage.
Pending *OPC? actions are cancelled.
The instrument is placed in the idle state awaiting a command. The *RST
command clears the error queue.
The following are not changed:
¢ Output queue

« Service Request Enable register (SRE)
« Standard Event Status Enable register (ESE)

The following parameters are reset

e Start: 0 km (Auto)
e Stop: 2 km (Auto) (Mini and Rack); 40 km (Auto) (Mainframe OTDR)
e Pulsewidth 1 ps (Auto)
¢ First Wavelength: 1310 nm
« Refractive Index, Scatter Coefficient nominal for 1310 nm
¢ Measurement Mode Averaging
¢ Averaging Time: 3 min (Mini and Rack); unlimited (Mainframe OTDR)
¢ Optimize Mode: Standard
« Data Points 16000
* Front Connector Threshold -30 dB
¢ Reflective Threshold 0
* Non-Reflective Threshold 0
e End Threshold: 5 dB (Mini and Rack); 3 dB (Mainframe OTDR)
parameters: none
response: none
example: *RST
affects: All instruments

52

Instrument Setup and Status
IEEE-Common Commands

command: *SAV
syntax: *SAV<wsp><location>
description: With the SAVe command *SAV the instrument setting is stored on the
internal storage device. The instrument can store 4 settings, in locations 1 to
4. The scope of the saved setting is identical to the standard setting (see
*RST).
Settings are in the formSET, s0*SAV 2 saves the current setting as
SET2.SET.
parameters: ahort value (between 0 and 5) giving the number of the setting to be
saved.
related commands: *RCL
response: none
example: *SAV 3
affects: All instruments

53

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
IEEE-Common Commands

*STB?

*STB?

The STatus Byte query *STB? returns the contents of the Status Byte
register.

The Master Summary Status (MSS) bit is true when any enabled bit of the
STB register is set (excluding Bit 6). The Status Byte register including, the
master summary bit, MSS, is not directly altered because of an *STB?

query.
none
The bit value for the registesliart value):

Bit Mnemonic Decimal Value

7 (MSB) Operation Status 128

6 Master Summary Status 64

5 Event Status Bit 32

4 Message Available 16

3 Questionable Status 8

2 Not used 0

1 Not used 0

0 (LSB) Laser Active Bit 1

*STB? - 1<END>
All instruments

*TST?

*TST?

The self-TeST query *TST? makes the instrument perform a self-test and
place the results of the test in the output queue.
No further commands are allowed while the test is running. After the self-
test the instrument is returned to the setting that was active at the time the
self-test query was processed.

none

The sum of the results for the individual tes88-it signed integer
value):
*TST? - O<END>
All instruments

54

Instrument Setup and Status
IEEE-Common Commands

command: *WAI
syntax: *WAI
description: The WAIt command *WAI prevents the instrument from executing any
further commands until the current command has finished executing. All
pending operations are completed during the wait period.
parameters: none
response: none
example: *WAI
affects: All instruments

55

command:

syntax:
description:
parameters:
response:

example:
affects:

command:

syntax:
description:
parameters:
response:

example:
affects:

command:

syntax:
description:
parameters:

response:
example:
affects:

Instrument Setup and Status
Status Reporting — The STATus Subsystem

3.2 Status Reporting — The STATus Subsystem

The Status subsystem allows you to return and set details from the
Status Model. For more details, see “HP OTDR Status Model” on
page 23

STATus:OPERation[:EVENt]?
STATus:OPERation[:EVENT{]?

Queries the operation event register

none

The bit value for the operation event registestastavalue
(0 .. +32767)
stat:oper? — +0<END>

All instruments

STATus:OPERation:CONDition?
STATus:OPERation:CONDition?

Queries the operation condition register

none

The bit value for the operation condition registeslasiavalue
(0 .. +32767)
stat:oper:cond?
All instruments

- +16<END>

STATus:OPERation:ENABIe
STATus:OPERation:ENABle<wsp><value>
Sets the operation enable mask for the event register
The bit value for the operation enable maskrastaralue
(0 .. +32767)
none
stat:oper:enab 128
All instruments

56

command:
syntax:
description:

parameters:

response:

example:
affects:

command;
syntax:
description:

parameters:

response:
example:
affects:

command;
syntax:
description:

parameters:

response:
example:
affects:

Instrument Setup and Status
Status Reporting — The STATus Subsystem

STATus:OPERation:ENABIle?
STATus:OPERation[:ENABIe]?
Returns the operation enable mask for the event register
none
The bit value for the operation enable masktastavalue
(0..+32767)
stat:oper:enab? — +128<END>
All instruments

STATus:POWer:ACDC?
STATus:POWer:ACDC?

Queries how the battery is powered.

none

AC, DC or CHARging
stat:pow:acdc? — AC<END>
Mini-OTDR and Rack OTDR only

STATus:POWer:.CAPacity?
STATus:POWer:CAPacity?

Returns the power capacity of the battery.

none

percentage capacity of the battery
stat:pow:cap? — 75%<END>
Mini-OTDR and Rack OTDR only

57

Instrument Setup and Status
Status Reporting — The STATus Subsystem

command: STATus:POWer.CURRent?
syntax: STATus:POWer:CURRent?
description: Returns the current of the battery in mA.
parameters: none
response: Battery current

NOTE If the battery is discharging, the returned value will be negative.

If the battery is charging, the returned value will be positive.

example: stat:pow:curr? - 200MA<END>
affects: Mini-OTDR and Rack OTDR only

command: STATus:POWer:REMain?
syntax: STATus:POWer.REMain?
description: Returns the operating time in minutes
parameters: none
response: Remaining time
example: stat:pow:rem? — 180MIN<END>
affects: Mini-OTDR and Rack OTDR only

command: STATus:PRESet
syntax: STATus:PRESet
description: Resets both enable masks to O.
parameters: none
response: none
example: stat:pres
affects: All instruments

58

command:
syntax:
description:

parameters:

response:

example:
affects:

command;
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:

response:
example:
affects:

Instrument Setup and Status
Status Reporting — The STATus Subsystem

STATus:QUEStionable[:EVENTt]?
STATus:QUEStionable[:EVENT{]?

Queries the questionable event register

none

The bit value for the questionable event registeshast @alue
(0..+32767)
stat:ques? — +0<END>

All instruments

STATus:QUEStionable:CONDition?
STATus:QUEStionable:CONDition?

Queries the condition register

none

The bit value for the questionable condition registestast ¥alue
(0 .. +32767)
stat:ques:cond? - +8<END>

All instruments

STATus:QUEStionable:ENABIe
STATus:QUEStionable:ENABle<wsp><value>
Sets the questionable enable mask for the event register
The bit value for the questionable enable masihas walue
(0 .. +32767)
none
stat:ques:enab 128
All instruments

59

Instrument Setup and Status
Status Reporting — The STATus Subsystem

command: STATus:QUEStionable:ENABIe?
syntax: STATus:QUEStionable[:ENABIe]?
description: Returns the questionable enable mask for the event register
parameters: none
response: The bit value for the questionable enable maséhas salue
(0 .. +32767)
example: stat:ques:enab? - +128<END>
affects: All instruments

60

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

3.3 Interface/Instrument Behaviour Settings —
The SYSTem Subsystem

The SYSTem subsystem lets you control the instrument’s serial
interface. You can also control some internal data (like date, time
zone, and so on)

SYSTem:BRIDge
SYSTem:BRIDge
Allows you to send and receive data from the instrument connected
to Seriall to the instrument connected to Serial 2.
Data characters are passed between Serial 1 and Serial 2 until the
command¢SCPI is detected.
none
none
syst:brid
Rack OTDR only

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess
SYSTem:COMMunicate:GPIB[:SELF]:ADDRess<wsp><value>
Sets the OTDR’s GP/IB address.

Valid values for the address are 1 .. 33l{art value).

none

syst:comm:gpib:addr 15

OTDR only

61

Instrument Setup and Status
Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

command: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?
syntax: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?
description: Queries the OTDR’s current GP/IB address.
parameters: none
response: Possible values for the address are 1 .. 3h¢at value).
example: syst:comm:gpib:addr? - +15<END>
affects: OTDR only

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD
syntax: SYSTem:COMMunicate:SERial[:RECeive]:BAUD<wsp><value>
description: Sets the baud rate for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the baud rate for Serial 1 is set.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.
parameters: Valid baud rates are 1200, 2400, 9600, 19200,38400, 57600, 115200.

response: none
example: syst:comm:ser:baud 9600

affects: All instruments

62

command:
syntax:
description:

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD?
SYSTem:COMMunicate:SERial[1]|2][:RECeive]:BAUD?
Returns the current baud rate for the OTDR serial interface

NOTE

You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the baud rate for Serial 1 is returned.

parameters:
response:

example:
affects:

command:
syntax:
description:

none

Possible baud rates are 1200, 2400, 9600, 19200, 38400, 57600,
115200
syst:comm:ser:baud?
All instruments

- +9600<END>

SYSTem:COMMunicate:SERial[:RECeive]:BITS
SYSTem:COMMunicate:SERial[:RECeive]:BITS<wsp><value>
Sets the number of data bits for the OTDR'’s serial interface.

NOTE

All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters

response:

example:
affects:

command:
syntax:
description:
parameters
response
example:
affects:

: Valid numbers are5.. 8
none
syst:comm:ser:bits 6
OTDR only

SYSTem:COMMunicate:SERial[:RECeive]:BITS?
SYSTem:COMMunicate:SERial[:RECeive]:BITS?
Returns the number of data bits for the OTDR'’s serial interface.
: none
: Possible numbers are 5 .. 8
syst:comm:ser:bits - +6<END>
OTDR only

63

command:
syntax:
description:

parameters:

response:
example:
affects:

command:
syntax:
description:
parameters:
response:
example:

affects:

Instrument Setup and Status
Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

SYSTem:COMMunicate:SERial:FEED
SYSTem:COMMunicate:SERial:FEED<wsp><command>
Send a command to the instrument connected to Serial 2

The command given as a text string in ™.
none

syst:comm:ser:feed "init"

Rack OTDR and OTDR only

SYSTem:COMMunicate:SERial:FEED?
SYSTem:COMMunicate:SERial:FEED?<wsp><query>
Send a query to the instrument connected to Serial 2

The query given as a text string in ™.
none

syst:comm:ser:feed? "*idn?" — HP E6000A Mini-
Optical Time Domain Reflectometer Mainframe
0123456789, Module: ABCDE54321 SW_Rev 1.1<END>

Rack OTDR only

64

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE
syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE<wsp>

<pace>
description: Sets the pace for the OTDR serial interface
NOTE You can choose Serial 1 or 2 for the Rack OTDR only.

If you are using a Rack OTDR, and you do not specify a serial port
number, the pace for Serial 1 is set.

You cannot use this command with a Rack OTDR Option 006
(RS485), as this does not have hardware handshaking.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid values are NONE, HARDware, XONXoff.

NOTE XONX is only available with the E4310A OTDR.
However, for binary disk transfers HARD is recommended, and

XONX is forbidden
response: none
example: syst:comm:ser:pace hard
affects: All instruments

65

Instrument Setup and Status
Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE?
syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE?
description: Returns the pace for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the pace for Serial 1 is requested.

parameters: none
response: Paossible values are NONE, HARDware, and XONXaoff.

NOTE XONX is only available with the E4310A OTDR.

example: syst.comm:ser:pace? - HARD<END>
affects: All instruments

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARIty
[[TYPE]
syntax; SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity[:TYPE]<wsp>
<parity>
description: Sets the type of parity checking for the OTDR’s serial interface.

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity type for Serial 1 is set.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.
parameters: Valid values are NONE, ODD, EVEN.
response:. none
example: syst:comm:ser:par odd
affects: All instruments

66

command:

syntax:
description:

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

SYSTem:COMMunicate:SERIial[1|2][:RECeive]:PARity
[[TYPE]?
SYSTem:COMMunicate:SERial[1]|2][:RECeive]:PARIty[: TYPE]?
Returns the type of parity checking for the OTDR’s serial interface.

NOTE

You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity type for Serial 1 is requested.

parameters:
response:
example:
affects:
command:

syntax:

description:

none
Possible values are NONE, ODD, EVEN.
syst.comm:ser:par? - ODD<END>
All instruments

SYSTem:COMMunicate:SERIial[1|2][:RECeive]:PARity:
CHECk
SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity: CHECk<wsp>
<boolean>

Determines whether parity checking is enabled for the OTDR’s serial
interface.

NOTE

You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity for Serial 1 is checked.

parameters:

response:
example:
affects:

Possible values are 0 and 1
none
syst.comm:ser:par.chec 1
All instruments

67

command:

Instrument Setup and Status
Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

SYSTem:COMMunicate:SERIial[1|2][:RECeive]:PARity
:CHECKk?

syntax: SYSTem:COMMunicate:SERial[1]|2][:RECeive].PARity:CHECK?
description: Queries whether parity checking is enabled for the OTDR’s serial interface.
NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity checking state for Serial 1 is requested.
parameters: none
response: Possible values are 0: checking disabled
1: checking enabled
example: syst:comm:ser:par:chec? - 1<END>
affects: All instruments
command: SYSTem:COMMunicate:SERial:PORT?
syntax: SYSTem:COMMunicate:SERial:PORT?
description: Inquires the type of second serial port that is configured (Rack
OTDR only).
parameters: none
response: RS232 or RS485
example: syst.comm:ser:port? — RS485 <END>
affects: Rack OTDR only
command: SYSTem:COMMunicate:SERial[:RECeive]:SBITS
syntax; SYSTem:COMMunicate:SERial[:RECeive]:SBITS<wsp><bits>
description: Sets the number of stop bits for the OTDR’s serial interface.
NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.
parameters: Valid numbers are ONE, ONEHalf, TWO
response: none
example: syst.comm:ser:sbit two
affects: OTDR only

68

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

SYSTem:COMMunicate:SERial[:RECeive]:SBITS?
SYSTem:COMMunicate:SERial[:RECeive]:SBITS?

Returns the number of stop bits for the OTDR'’s serial interface.
none

Possible values are ONE, ONEHalf, TWO

syst:comm:ser:shit? - TWO<END>

OTDR only

SYSTem:DATE
SYSTem:DATE<wsp><day>,<month>,<year>
Sets the OTDR'’s internal date.

The date in the format day, month,\start{ values)
none

syst:date 20,7,1995
All instruments

SYSTem:DATE?
SYSTem:DATE?
Returns the OTDR’s internal date.
none
The date in the format day, month,\sar(values)
syst:date? - +20,+7,+1995<END>
All instruments

69

Instrument Setup and Status
Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

command: SYSTem:ERRor?
syntax: SYSTem:ERRor?
description: Returns the contents of the OTDR’s error queue. Removes the
returned entry from the queue.
parameters: none
response: The number of the latest error, and its meaning.
example: systerr? — -113,"Undefined header"'<END>
affects: All instruments

command: SYSTem:HELP?
syntax: SYSTem:HELP?<wsp><keyword>
description: Returns a help page corresponding to the specified keyword.
parameters: keyword given as a string in "". For example, "SYSTem",
"SOURce", "DISPlay", "[EEEcommon".
"' returns a list of valid keywords.
response: A Binary block containing the help page.
example: syst:help? "syst" — #3316[help_page]<END>
affects: All instruments

70

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

command: SYSTem:KEY
syntax: SYSTem:KEY<wsp><code>
description: Simulates keystrokes on the OTDR’s frontpanel.
parameters: Valid key codes are as follows:

Mini-OTDR Rack OTDR E4310A OTDR
0:Select key. 0: Enter/Return 0: Enter (RPG-click)
1:Run/Stop key. 1: <f2> 1: Softkey 1 (topmost)
2:Up key 2: Up arrow 2: Softkey 2
3:Down key 3: Down arrow 3: Softkey 3
4:Left key 4: Left arrow 4: Softkey 4
5:Right key 5: Right arrow 5: Softkey 5
6:Help key 6: <f1> 6: Softkey 6
7: Help
8: Zoom Horizontal Out
9: Zoom Vertical In

10: Zoom Vertical Out
11: Zoom Horizontal In
12: Next marker
13: Print
14: Full Trace
15: Save
16: Trace/Event
17: Around Marker
18: Auto
19: Run/Stop
20: Decrease Brightness
21: Increase Brightness
response: none
example: systkey? 1<END>
affects: All instruments

71

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

command: SYSTem:KEY?
syntax: SYSTem:KEY?
description: Returns either the last keystroke entered on the OTDR frontpanel
(Mini-OTDR and Rack OTDR only), or the last keystroke emulated
by theSYSTem:KEYremote command (all instruments).
parameters: none
response: Valid key codes are as follows:

Mini-OTDR Rack OTDR E4310A OTDR
0:Select key. 0: Enter/Return 0: Enter (RPG-click)
1:Run/Stop key. 1. <f2> 1: Softkey 1 (topmost)
2:Up key 2: Up arrow 2: Softkey 2
3:Down key 3: Down arrow 3: Softkey 3
4:Left key 4: Left arrow 4: Softkey 4
5:Right key 5: Right arrow 5: Softkey 5
6:Help key 6: 1> 6: Softkey 6
7: Help
8: Zoom Horizontal Out
9: Zoom Vertical In

10: Zoom Vertical Out
11: Zoom Horizontal In
12: Next marker
13: Print
14: Full Trace
15: Save
16: Trace/Event
17: Around Marker
18: Auto
19: Run/Stop
20: Decrease Brightness
21: Increase Brightness
example: syst:key? - 1<END>
affects: All instruments

72

command:
syntax:
description:

parameters:

response:
example:
affects:

command:
syntax:
description:

parameters:

response:
example:
affects:

command:
syntax:
description:

parameters:

response:
example:
affects:

Instrument Setup and Status
Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

SYSTem:PRESet
SYSTem:PRESet
Loads a predefined instrument setting that is also loaded on power
on.
none
none
syst:pres
All instruments

SYSTem:SET
SYSTem:SET<wsp><setting>
Sets the specified instrument setting from a binary block.

binary block
none
syst:set binblock

All instruments

SYSTem:SET?
SYSTem:SET?
Reads the complete instrument setting in a binary block. The binary
block can be directly stored as a setting file.
none
binary block
syst:set? - binblock
All instruments

73

Instrument Setup and Status
Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

command: SYSTem:TIME

syntax:
description:

parameters:

response:

example:
affects:

command;
syntax:
description:

parameters:
response:

example:
affects:

command:

syntax:
description:

parameters:
response:
example:

affects:

SYSTem:TIME<wsp><hour>,<minute>,<second>
Sets the OTDR’s internal time.
The time in the format hour,minute,second. Hours are counted 0...23
(short values).
none
gst:itime 20,15,30
All instruments

SYSTem:TIME?
SYSTem:TIME?
Returns the OTDR’s internal time.
none
The time in the format hour,minute,second. Hours are counted 0...23
(short values).
syst:time? - +20,+15,+30<END>
All instruments

SYSTem:UPTime?
SYSTem:UPTime?
Returns the time (in seconds) since you switched on your OTDR.
none
The time in second®32 value).
syst.upt? — 240<END>
Mini-OTDR and Rack OTDR only

74

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

command: SYSTem:VERSion?
syntax: SYSTem:VERSion?
description: Returns the SCPI revision to which the OTDR complies.
parameters: none
response: The revision year and number.
example: syst:vers? — 1995.0<END>
affects: All instruments

75

Instrument Setup and Status

Interface/Instrument Behaviour Settings — The SYSTem
Subsystem

76

Operations on Traces and
Measurements

Operations on Traces
and Measurements

This chapter gives descriptions of commands that you can use when
taking traces and measurements from your OTDR. The commands
are split into the following separate subsystems:

* Root level commands: general commands.

:PROGRAM/:CALCULATE : commands which execute tasks
or calculate values.

:SENSE commands which control measurement parameters.

:SOURCE: commands which control the optical source and
markers.

* :TRACE: commands which relate to the traces in the OTDR’s
memory.

Other commands are described in Chapter 3 “Instrument Setup and
Status”, and Chapter 5 “Mass Storage, Display, and Print
Functions”.

78

Instrument Setup and Status
Root Layer Commands

4.1 Root Layer Commands

command: ABORt[1/2]

syntax: ABORI{[1/2]
description: Stops arunning measuremeatior oraborl : on the OTDR
abor2 : on the Visual Fault Finder
NOTE You cannot use a Visual Fault Finder with an E4310A OTDR.
You can therefore only useabor with an E4310A.
parameters: none
response: none
example: abor
affects: All instruments
command: FETCh[:SCAlar]:POWer[:DC]?
syntax: FETCh[.:SCALar]:POWer[.DC]?
description: Reads the current power meter value.
NOTE If the power meter is not running, a measurement is triggered.
parameters: none
response: The reference aoat value in dBm, W or dB.
NOTE If the reference state is absolute, units are dBm or W.
If the reference state is relative, units are dB.
example: fetc:pow? - +4DBM<END>
affects: Mini-OTDR and Rack OTDR only

79

Instrument Setup and Status
Root Layer Commands

command: INITiate[1]|2][:IMMediate][:ALL]
syntax: INITiate[1|2][:IMMediate][:ALL]
description: Starts a measuremenitit orinitl : internal source
init2 : power meter
NOTE You cannot use a Visual Fault Finder with an E4310A OTDR.
You can therefore only usenit with an E4310A.
parameters: none
response: none
example: init
affects: All instruments
command: INITiate2[:IMMediate]:CONTinuous
syntax: INITiate2[:IMMediate]: CONTinuous<wsp><boolean>
description: Starts a power meter measurement.
parameters: /Aooleanvalue: 0 — single measurement made
1 — continuous measurement made
response: none
example: init2:cont 1
affects: Mini-OTDR and Rack OTDR only
command: INITiate2[:IMMediate]:CONTinuous?
syntax: INITiate2[:IMMediate]: CONTinuous?
description: Queries whether power meter measurement is continuous
parameters: none
response: Aooleanvalue: 0 - single measurement
1 — continuous measurement
example: init2:cont? — 1<END>
affects: Mini-OTDR and Rack OTDR only

80

command:
syntax:

Instrument Setup and Status
Root Layer Commands

KEYBoard
KEYBoard

description: Allows the use of a terminal as an external keyboard

parameters:
response:

none
none

example: keyb

NOTE keyb allows you to add text from a terminal (for example, when
specifying the name of a file to be saved). To use this facility, you should
do the following:

1 Attach your OTDR to aterminal. In this context, a terminal is any
PC or palmtop running a terminal program. The terminal should
have its own keyboard.

You can attach the terminal using an RS232 cable. For details of
attaching an RS232 cable to an OTDR, see the appropriate Guide.

2 Enter keyb from your terminal keyboard.

3 Enter text as required from your terminal keyboard. All text is
treated literally until you enter <CTRL>Z (ASCII character 26)
(see below).

4 To finish entering text, enter<CTRL>Z from your terminal
keyboard.

For example, after [File]<Save As..New Nameyou see a keyboard on

the OTDR screen. Instead of using this keyboard you can enter the

following text from your terminal:
keyb
T1.SOR
nZ

This is the equivalent of enteringT1.SOR from the screen keyboard.

affects: Mini-OTDR and Rack OTDR only

81

Instrument Setup and Status
Root Layer Commands

command: READ[:SCAlar]:POWer[:DC]?

syntax: READ[:SCALar]:POWer[:DC]?
description: Reads the current power meter value.
NOTE The power meter must be running for this command to be
effective
parameters: none
response: The reference alboat value in dBm, W or dB.
NOTE If the reference state is absolute, units are dBm or W.
If the reference state is relative, units are dB.
example: read:pow? - +4DBM<END>
affects: Mini-OTDR and Rack OTDR only
command: TRAFficdet
syntax: TRAFficdet<wsp><onoff>
description: Turn traffic detection on or off
parameters: ON: turn traffic detection on
OFF: turn traffic detection off.
response: none
example: traf on
affects: Mini-OTDR and Rack OTDR only
command: TRAFficdet?
syntax: TRAFficdet?
description: Queries whether traffic detection is on or off
parameters: none
response: ON: traffic detection is on
OFF: traffic detection is off.
example: traf? - ON<END>
affects: Mini-OTDR and Rack OTDR only

82

Instrument Setup and Status

Playing With Data — The PROGram and CALCulate
Subsystems

4.2 Playing With Data — The PROGram and
CALCulate Subsystems

The PROGram and CALCulate subsystems allow you to execute
special tasks and calculating several loss and attenuation values

command: PROGram:EXPLicit: CHECKk:LIMit
syntax: PROGram:EXPLicit: CHECKk:LIMit<wsp><param><wsp><value>
description: Set the Trace Checker limits for the specified parameter.
parameters: Valid values are as follows.

Units Units Limit
REFLective mdB 10000 .. 65000
NONReflective mdB 0..5000
ATTenuation mdB/km 0..5000
LOSS mdB 0 .. 50000
LENGTh mm 0 .. 500000000
TOLerance mm 0 .. 50000000
NEW events 0=off, non-zero=on

The units specified above are implied, so you must only enter a
positive integer within the specified limits.

NOTE For more information about the Trace Checker limits, please
consult theE6000A Mini-OTDR User's Guid€English HP Product
number E6000-91011).

response: none
example: prog:expl:chec:lim ref 30000

affects: Mini-OTDR and Rack OTDR only

83

Instrument Setup and Status

Playing With Data — The PROGram and CALCulate
Subsystems

command: PROGram:EXPLicit: CHECk:LIMit?
syntax: PROGram:EXPLicit: CHECk:LIMit?<wsp><param>

description: Query the Trace Checker limits for the specified parameter.

parameters: Valid values/units are: REFLective
NONReflective
ATTenuation
LOSS
LENGTh
TOLerance
NEW events

response: The units and limits as the same as for
PROGram:EXPLicit: CHECKk:LIMit on page 83.

NOTE For more information about the Trace Checker limits, please
consulttheE6000A Mini-OTDR User’s Guid€éEnglish HP Product
number E6000-91011).

example: prog:expl:chec:lim? refl — -30000<END>
affects: Mini-OTDR and Rack OTDR only

command: PROGram:EXPLicit:EXECute
syntax: PROGram:EXPLicit:EXECute<wsp><task>
description: Allows executing special tasks on the OTDR.
parameters: A string specifying the task.
Currently only'scan" is valid on all instruments.

On the Mini-OTDR and Rack OTDR, you can also eritéieck" to
start the Trace Checker.

NOTE Because this command does not accept character data, you must
put quotation marks around the parameterscan or check .

response: none
example: prog:expl:exec "scan”
affects: All instruments

84

command:
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:

response:

example:
affects:

Instrument Setup and Status

Playing With Data — The PROGram and CALCulate
Subsystems

PROGram:EXPLicit:NUMBer
PROGram:EXPLicit:NUMBer<wsp><type>,<value>
Sets the threshold.

REFLective, NONReflective, or END
threshold valueift32) in mdB

none
prog:expl:numb refl, 60000
All instruments

PROGram:EXPLicit:NUMBer?
PROGram:EXPLicit:NUMBer?<wsp><type>
Requests the threshold value.

REFLective, NONReflective, or END
threshold valu@t32) in mdB
prog:expl:numb? refl

All instruments

- 60000<END>

PROGram:EXPLIicit:STATe
PROGram:EXPLicit:STATe<wsp>"scan",<boolean>
Allows terminating the currently running task

MAooleanvalue: 0 — terminate the task

1 — no action

none
prog:expl:stat "scan",0
All instruments

85

Instrument Setup and Status
Playing With Data — The PROGram and CALCulate
Subsystems

command: PROGram:EXPLicit:STATe?
syntax: PROGram:EXPLicit:STATe?<wsp>"scan"
description: Queries whether a task is still running.
parameters: none
response: Aooleanvalue: 0 —task is not running
1 — task is still running
example: prog:expl:stat? "scan” — 1<END>
affects: All instruments

command: CALCulate:MATH:EXPRession:NAME?
syntax: CALCulate:MATH:EXPRession:NAME?<wsp><expr>
description: Allows calculating several loss and attenuation values. All
calculations use the stretch between markers A and B.
parameters: Valid values are: LOSS
LSAattenuation
AT Tenuation.
ORL.: Optical Return Loss
response: The loss is returned in dB. The attenuations are returned in mdB/km.
example: calc:math:expr:name? att - 291MDB/KM<END>
affects: All instruments

86

command:
syntax:

description:

Instrument Setup and Status

Playing With Data — The PROGram and CALCulate
Subsystems

CALCulate:MATH:EXPRession:REFLex?
CALCulate:MATH:EXPRessionREFLex?<wsp><pos1>,<pos2>,
<pos3>

Calculate the Reflectance of an event

NOTE

The active marker must be at the position of the Event.

parameters:

response:

3 aux marker positions with length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.

reflectance or reflection height in dB

NOTE

The type of measurement given (reflectance or reflection height)
depends on how you have configured your instrument.
You specify a new configuration withcalc:math:expr:type

example:

affects:

command:
syntax:

description:

calc:math:expr:refl? 9.5km,9800m,1001000cm -
-55.5000DB Marker at 10k
All instruments

CALCulate:MATH:EXPRession:SPLice?
CALCulate:MATH:EXPRession:SPLice?<wsp><pos1>,<p0os2>,
<pos3>,<pos4>

Calculate the splice loss of an event.

NOTE

The active marker must be at the position of the splice.

parameters:

response:
example:

affects:

4 aux marker positions with length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.
splice loss in mdB
calc:math:expr:spl? 9.5km,9800m,10500m,10.8km -
100MDB (Marker at 10k
All instruments

87

Instrument Setup and Status

Playing With Data — The PROGram and CALCulate
Subsystems

command: CALCulate:MATH:EXPRession:TYPE
syntax: CALCulate:MATH:EXPRession:TYPE<wsp><type>
description: Sets the reflection parameter used for the return value of
calc:math:expr:refl? and the event table (for example,
trac:data:tabl).
parameters: Valid values are: REFLectance and HEIGht.
response: none
example: calc:math:expr:type ref
affects: Mini-OTDR and Rack OTDR only

command: CALCulate:MATH:EXPRession:TYPE?
syntax: CALCulate:MATH:EXPRession:TYPE?
description: Queries the reflection parameter used for the return value of
calc:math:expr:refl? and the event table (for example,
trac:data:tabl).
parameters: none
response: REFL or HEIG
example: calc:math:expr:type — REFL<END>
affects: Mini-OTDR and Rack OTDR only

88

command:
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:

response:

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

4.3 Measurement Functions — The SENSe
Subsystem

The SENSe subsystem lets you control measurement parameters
like the averaging time, the detector’s bandwidth, and fiber
parameters.

SENSe:AVERage:COUNt
SENSe:AVERage:COUNt<wsp><value>
Sets the averaging time.
Averaging time in secondslfart value).
A value of 0 means that the measurement runs until it is stopped by
the user.
none
sens:aver:coun 180
All instruments

SENSe:AVERage:COUNLt?
SENSe:AVERage:COUNt?<wsp><boolean>
Queries the averaging time.

A booleanvalue: 0 — returns averaging time
1 - returns time elapsed since start of measurement.

Averaging time in secondslgart value).

NOTE

If your instrument is configured to measure Number of Averages,
rather than Averaging Time, you receive a response of 0.
Usesens:aver:coun to configure your instrument for
Averaging Time (Mini-OTDR only).

example:
affects:

sens:aver:coun? 0 — +180<END>

All instruments

89

command:
syntax:
description:

parameters:

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

SENSe:AVERage:COUNt:NUMBer
SENSe:AVERage:COUNt:NUMBer<wsp><value>

Sets the number of averages to measure.

Number of averages as a power osRofavalue).
For example, if you enter 142%averages are taken.
A value of 0 means that the measurement runs until it is stopped by
the user.

NOTE

You may only enter O or an integer between 14 and 22.

response:

example:
affects:

command:
syntax:
description:

parameters:

response:

none
sens:aver.coun:numb 14
Mini-OTDR and Rack OTDR only

SENSe:AVERage:COUNt:NUMBer?
SENSe:AVERage:COUNt?<wsp><boolean>
Queries the number of averages measured.

A booleanvalue: 0 — returns averaging time
1 - returns time elapsed since start of measurement.

Number of averages as a power okRofavalue).
For example, if you see 14, the instrument is configured to tdke 2
averages.

NOTE

If your instrument is configured to measure Averaging Time,
rather than Number of Averages, you receive a response of 0.
Usesens:aver:coun:numb to configure your instrument for
Number of Averages.

example:
affects:

sens:aver:coun? 0 — 14<END>
Mini-OTDR and Rack OTDR only.

90

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

command: SENSe:DETector[:FUNCtion]
syntax: SENSe:DETector[:FUNCtion]<wsp><mode>
description: Sets the current measurement mode.

parameters: Valid modes are: AVERage
REAL time
CONTinue
CW
RETLoss (E4310A only)
M2kHz (Mini-OTDR and Rack OTDR only)

response: none
example: sens:det aver
affects: All instruments

command: SENSe:DETector[:FUNCtion]?
syntax: SENSe:DETector[:FUNCtion]?
description: Returns the current measurement mode.
parameters: none

response: Possible responses aféERage

REAL time

CONTinue

cw

RETLoss (E4310A only)

M2kHz (Mini-OTDR and Rack OTDR only)
example: sens:det? - AVER<END>

affects: All instruments

91

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

command: SENSe:DETector[:FUNCtion:]JAUTO

syntax: SENSe:DETector[:FUNCtion]:AUTO<wsp><boolean>
Enables or disables the automatic measurement mode.
0 — disable auto mode
1 — enable auto mode

description:
parameters: /Aooleanvalue:

response: none
example: sens:det:auto 1
affects: All instruments

command: SENSe:DETector[:FUNCtion:]JAUTO?
SENSe:DETector[:FUNCtion]:AUTO?

syntax:
description: Queries whether the automatic measurement mode is enabled.
parameters: none
response: Aooleanvalue: 0 - auto mode disabled
1 — auto mode enabled
example: sens:det:auto? - 1<END>

affects: All instruments

command: SENSe:DETector[:FUNCtion:]JOPTimize
syntax: SENSe:DETector[:FUNCtion]:OPTimize<wsp><mode>

description: Sets the optimization mode

parameters: Valid modes are: NONE — standard optimization
RESolution — optimize for resolution

DYNamic — optimize for dynamic
LINearity - optimize for linearity (E4310A only)

response: none
example: sens:det:opt res
affects: All instruments

92

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

command: SENSe:DETector[:FUNCtion:]JOPTimize?
syntax: SENSe:DETector[:FUNCtion]:OPTimize?
description: Returns the current optimization mode.
parameters: none

response: Possible modes are NONE — standard optimization
RESolution — optimize for resolution

DYNamic — optimize for dynamic
LINearity - optimize for linearity (E4310A only)
example: sens:.det:opt2 RES<END>
affects: All instruments

command: SENSe:DETector:MODE
syntax: SENSe:DETector:MODE<wsp><mode>
description: Selects the mode of the OTDR screen

parameters: Valid modes are: OTDR — OTDR mode
BREAK — Fiber Break Locator

SOURCce — Source mode

response: none
example: sens:det:mode otdr
affects: Mini-OTDR and Rack OTDR only

command: SENSe:DETEctor:MODE?
syntax: SENSe:DETector:MODE?
description: Returns the current mode of the OTDR
parameters: none
response: Possible modes are OTDR, BREAK, SOUR
example: sens:det:mode - OTDR<END>
affects: Mini-OTDR and Rack OTDR only

93

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

SENSe:DETector:SAMPIle:DISTance?
SENSe:DETector:SAMPIle:DISTance?
Queries the current sample distance.

none
The sample distance in mm.
sens:samp:dist? — +4600<END>

All instruments

SENSe:FIBer:REFRindex
SENSe:FIBer:REFRindex<wsp><value>
Sets the fiber’s refractive index.

The refractive indexfi@at value).
none

sens:fib:refr 1.458
All instruments

SENSe:FIBer:REFRindex?
SENSe:FIBer:REFRindex?

Returns the current refractive index.

none

The refractive indexfl@at value).
sens:fib:refr? — +1.4580000<END>
All instruments

94

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

SENSe:FIBer:SCATtercoeff
SENSe:FIBer:SCATtercoeff<wsp><value>[dB|mdB]
Sets the fiber’s scatter coefficient.

The scatter coefficient in mdB (default) or d®&avalue).
none

sens:fib:scat 51500mdb
All instruments

SENSe:FIBer:SCATtercoeff?
SENSe:FIBer:SCATtercoeff?

Returns the current scatter coefficient.

none

The scatter coefficient in dBlgat value).
sens:fib:scat? — +51.500DB<END>
All instruments

SENSe:FIBer:-TYPE?

SENSe:FIBer:TYPE?

Queries the fiber type of the measurement module.
none

Possible values are: MONomode

MULTimode
sens:fib:type? - MULT<END>

All instruments

95

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:

description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:
response:

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

SENSe:POWer:FREQuency?
SENSe:POWer:FREQuency?
Queries the detected power meter input frequency.
none
Valid responses are: CW, LI, and the current frequency in Hz or KHz
sens:pow:freq? — 270HZ<END>
Mini-OTDR and Rack OTDR only

SENSe:POWer:REFerence
SENSe:POWer:REFerence<wsp><value>
[PW[nW|uW|mW|Watt|dBm]

Sets the power meter reference value

The reference aoat value. You may append a unit type.
Valid units are: pW, nW, uwW, mw, Watt, and dBm.
If no unit type is specified, dBm is implied.

none
sens:pow:ref 4dBm

Mini-OTDR and Rack OTDR only

SENSe:POWer:REFerence?
SENSe:POWer:REFerence?
Queries the power meter reference value and units
none
The reference affoat value in dBm, W or dB.

NOTE

If the reference state is relative, units are dBm or W.
If the reference state is absolute, units are dB

example:
affects:

sens:pow:ref? — +4DBM<END>
Mini-OTDR and Rack OTDR only

96

command:
syntax:
description:
parameters:
response:
example:
affects:

command:

syntax:
description:
parameters:

response:
example:
affects:

command;
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

SENSe:POWer:REFerence:DISPlay
SENSe:POWer:REFerence:DISPlay

Takes the current power meter value as the reference value

none

none
sens:pow:ref.disp

Mini-OTDR and Rack OTDR only

SENSe:POWer:REFerence:STATe
SENSe:POWer:REFerence:STATe<wsp><boolean>
Sets the power meter display to relative or absolute
Mdooleanvalue: 0 - relative

1 - absolute
none

sens:pow:ref:stat 1
Mini-OTDR and Rack OTDR only

SENSe:POWer:REFerence:STATe?
SENSe:POWer:REFerence:STATe?

Inquires whether the current power meter display is relative or
absolute

none
Aoooleanvalue: 0 - relative
1 - absolute
sens:pow:ref:stat? — 1<END>

Mini-OTDR and Rack OTDR only

97

command:
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

SENSe:POWer:UNIT
SENSe:POWer:UNIT<wsp><boolean>
Sets the power meter power unit

MAooleanvalue: 0-dBm
1 - Watt
or DBM or W
none

sens:pow:unit 1
Mini-OTDR and Rack OTDR only

SENSe:POWer:UNIT?
SENSe:POWer:UNIT?
Inquires the current power meter power unit
none
DBM or W
sens:pow:unit? - W<END>
Mini-OTDR and Rack OTDR only

SENSE:POWer:WAVelength
SENSE:POWer:WAVelength<wsp><value>[NM | UM | MM | M]
Sets the current power meter wavelength.
The wavelength aloat value in nm/um/mm/m.
none
sens:pow:wav 1550E-3um
Mini-OTDR and Rack OTDR only

98

Instrument Setup and Status
Measurement Functions — The SENSe Subsystem

command: SENSE:POWer:WAVelength?
syntax: SENSE:POWer:WAVelength?
description: Inquires the current power meter wavelength.
parameters: none
response: The wavelength aiaat value in nm.
example sens:pow:wav? - +1550NM<END>
affects: Mini-OTDR and Rack OTDR only

99

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

4.4 Signal Generation — The SOURce Subsystem

The SOURCce subsystem allows controlling the OTDR’s optical
source. It also controls positions and appearance of the markers

[SOURce:]AM[:INTernal]:FREQuency[1]
[SOURce:]JAM[:INTernal]:FREQency[1]<wsp><freq>
Sets the modulation frequency of the internal source
Valid units are: CW, F270HZ, F1IKHZ, F2KHZ, and CODE
none
am:freq f270hz
Mini-OTDR and Rack OTDR only

[SOURCce:]AM[:INTernal]:FREQuency[1]?
[SOURce:]JAM[:INTernal]:FREQency[1]?
Queries the current modulation frequency of the internal source
none
Valid units are: CW, F270HZ, F1IKHZ, F2KHZ, and CODE
am:freq? - F270HZ<END>
Mini-OTDR and Rack OTDR only

[SOURCce:]JAM[:INTernal]:FREQuency2
[SOURce:]JAM[:INTernal]:FREQency2<wsp><freq>
Sets the modulation frequency of the Visual Fault Finder
Valid units are: CW and F1HZ
none
am:freg2 flhz
Mini-OTDR and Rack OTDR only

100

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

command: [SOURce:JAM[:INTernal]:FREQuency2?
syntax: [SOURce:]JAM[:INTernal]:FREQency2?
description: Queries the current modulation frequency of the Visual Fault Finder
parameters: none
response: Valid units are: CW and F1HZ
example: am:freq2? - F1HZ<END>
affects: Mini-OTDR and Rack OTDR only
command: [SOURce:]HOFFset
syntax: [SOURce:]HOFFset<wsp><value>[MM | CM | M | KM | MI | FT |
KFT]
description: Sets the horizontal offset.
parameters: The offset afl@at value. You may append a length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.
NOTE A value of 0 clears the horizontal offset.
response: none
example: hoff 5km
affects: All instruments
command: [SOURce:]HOFFset?
syntax: [SOURce:]JHOFFset?
description: Returns the current horizontal offset.
parameters: none
response: The offset adlaat value in the current length unit.
example: hoff? - +5.0000000KM<END>
affects: All instruments

101

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

command: [SOURce:]MARKer1|2|3:POINt

syntax:
description:

[SOURce:]MARKer1|2|3:POINt<wsp><position>[length unit]
Sets the position of the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE

The Mini-OTDR and Rack OTDR have no Marker C.
MARKS3 is therefore only valid for the E4310A.

parameters:
response:

example:
affects:

command:

syntax:
description:

Position in length unit.
none

mark2:poin 1000m

All instruments

[SOURce:]MARKer1|2|3:POINt?

[SOURce:]MARKer1|2| 3:POINt?

Returns the position of the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE

The Mini-OTDR and Rack OTDR have no Marker C.
MARKS3 is therefore only valid for the E4310A.

parameters:
response:
example:

affects:

none

Position in length unit.
mark2:poin? — +1KM <END>
All instruments

102

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

command: [SOURce:]MARKerl|2|3 [:STATe]
syntax: [SOURce:]MARKerl|2|3[:STATe]<wsp><boolean>
description: Activates or disables the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARKS3 is therefore only valid for the E4310A.

parameters: /Aooleanvalue: 0 — disables marker
1 — enables marker
response: none
example: mark2 1
affects: All instruments

command: [SOURce:]MARKerl|2|3[:STATe]?
syntax: [SOURce:]MARKerl|2|3[:STATe]?
description: Queries the state of the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARKS is therefore only valid for the E4310A.

parameters: none
response: Aooleanvalue: 0 — marker disabled
1 — marker enabled
example: mark2? - 1<END>
affects: All instruments

103

command:
syntax:
description:

parameters:

response:
example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:

response:
example:
affects:

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

[SOURce:]POWer:STATe[1]2]
[SOURce:]POWer:STATe[1|2]

Switches the laser of the chosen source on or off:
stat orstatl :internal source (default)

stat2 : Visual Light Source

MAooleanvalue: 0 - Laser Off
1-Laser On
none
pow:stat 1

Mini-OTDR and Rack OTDR only

[SOURce:]POWer:STATe[1]|2]?
[SOURce:]POWer:STATe[1]2]?

Queries the laser state of the chosen source:
stat orstatl :internal source (default)
stat2 : Visual Light Source

none

Aooleanvalue: 0 — Laser Off

1-Laser On

pow:stat - 1<END>

Mini-OTDR and Rack OTDR only

[SOURce:]PULSe:WIDTh
[SOURce:]PULSe:WIDTh<wsp><value>[NS|US|MS|S]
Sets the measurement pulsewidth.

The pulsewidth in ns/udl¢at value).
none

puls:widBOOOE-9s

All instruments

104

command:
syntax:
description:

parameters:

response:
example:
affects:

command:
syntax:
description:

parameters:

response:
example:
affects:

command;
syntax:
description:

parameters:

response:
example:
affects:

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

[SOURce:]PULSe:WIDTh?
[SOURCce:]PULSe:WIDTh?
Returns the measurement pulsewidth.

none
The pulsewidth in ns/usfert value).
puls:widt? - 3US<END>

All instruments

[SOURce:]PULSe:WIDTh:LLIMIt?
[SOURce:]PULSe:WIDTh:LLIMit?

Returns the lower limit for the pulsewidth determined by the
measurement hardware.

none

The pulsewidth in ns/usfert value).
puls:widt:llim? — +10NS<END>

All instruments

[SOURce:]PULSe:WIDTh:ULIMit?
[SOURce:]PULSe:WIDTh:ULIMit?

Returns the upper limit for the pulsewidth determined by the
measurement hardware.

none

The pulsewidth in ns/us ltars value).
puls:widt:ulim? — +10US<END>

All instruments

105

command:
syntax:
description:

parameters:

response:
example:
affects:

command:
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:

description:
parameters:

response:
example:
affects:

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

[SOURce:]RANGe:LUNiIt
[SOURce:]RANGe:LUNit<wsp><unit>
Sets the length unit.

Valid units are: M — meters
FT — feet
MI — miles
none
rang:lun m

All instruments

[SOURCce:]RANGe:LUNiIt?
[SOURce:]RANGe:LUNiIt?
Queries the current length unit.

none
Valid units are: M — meters
FT — feet
MI — miles
rang:lun? — M<END>

All instruments

[SOURce:]RANGe:SPAN

[SOURce:]RANGe:SPAN<wsp><value>[MM | CM | M | KM | Ml |

FT | KFT]
Sets the measurement span.

The span afigat value. You may append a length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.

none
rang:span 50mi
All instruments

106

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:

description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

[SOURce:]RANGe:SPAN?
[SOURce:]RANGe:SPAN?

Returns the current measurement span.

none

The span afi@at value in the current length unit.
rang:span? — +80.4670000KM<END>

All instruments

[SOURce:]RANGe:STARt
[SOURce:]RANGe:STARt<wsp><value>[MM | CM | M | KM | MI |
FT | KFT]
Sets the starting point for the measurement.
The start asl@at value. You may append a length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.
none
rang:star 10km
All instruments

[SOURce:]RANGe:STARt?
[SOURce:]RANGe:STARLt?
Returns the current starting point for the measurement.
none
The start adleat value in the current length unit.
rang:star? — 10.0000000KM<END>
All instruments

107

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

command: [SOURce:]JWAVelength[1]|2][:CW]
syntax: [SOURce:]WAVelength[1]|2][:CW]<wsp><value>[NM | UM | MM | M]
description: Sets the wavelength for the specified source:
wav orwavl: internal source (default)
wav2: Visual Light source

NOTE wav? is only included for the sake of consistency. You will never
want to set the Visual Light Source wavelength

NOTE You cannot use a submodule with an E4310A OTDR.
You can therefore only usevav with an E4310A.

parameters: The wavelength afaat value in nm/um/mm/m.
response: none
example: wav 1550E-3um
affects: All instruments

command: [SOURce:]WAVelength[1]|2][:CW]?
syntax: [SOURce:]WAVelength[1:2][:CW]?
description: Inquires the wavelength for the specified source:
WAVelength or WAVelengthl: internal source (default)
WAVelength2: Visual Light source

NOTE You cannot use a submodule with an E4310A OTDR.
You can therefore only usavav with an E4310A.

parameters: none
response: The wavelength aicat value in nm.
example: wav? - +1550NM<END>
affects: All instruments

108

Instrument Setup and Status
Signal Generation — The SOURce Subsystem

command: [SOURce:]WAVelength[1]|2][:CW]:AVAilable?
syntax: [SOURce:]WAVelength[1|2][:CW]:AVAilable?
description: Returns the wavelengths for the specified source:
wav orwavl: internal source (default)
wav2: Visual Light source

NOTE You cannot use a submodule with an E4310A OTDR.
You can therefore only usevav:ava? with an E4310A.
parameters: The wavelengthsflasit values separated by commas.

response: none
example: waviava? - 1310,1550<END>

affects: All instruments

109

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

4.5 Trace Data Access — The TRACe Subsystem

The TRACe subsystem lets you control the traces loaded into the
OTDR’s memory.

command: TRACe:CATalog?
syntax: TRACe:CATalog?
description: Returns the names of the currently loaded traces and their positions
in the trace array.
There is a maximum of two loaded traces for the Mini-OTDR and
Rack OTDR, and four loaded traces for the Mainframe OTDR.
parameters: none
response: A string terminated by <END>.
example: trac:cat? — "1:.TRACE1.SOR 2:TRACE2.SOR"<END>
affects: All instruments

110

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

command: TRACe:DATA?
syntax: TRACe:DATA?
description: Reads a complete trace data array for the current trace.
parameters: none
response: The data is a Binary Block containing the trace data.

NOTE TRAC:DATA?returns blocks of unsigned short (16-bit) data in
Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola)
use big endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the
low and high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.

example: trac:data? - #48192[..8192 bytes of data..]J<END>
affects: All instruments

command: TRACe:DATA:CHECk:TABLe?
syntax: TRACe:DATA:CHECKk:TABLe?
description: Returns the Trace Checker Table.
parameters: none.
response: Block containing the trace checker table. The header is the same as a
binary, but the data is in ASCII format.
example: trac:data:chec:tabl? - block<END>
affects: Mini-OTDR and Rack OTDR only

111

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

command: TRACe:DATA:CHECK:STATe?
syntax: TRACe:DATA:CHECk:STATe?
description: Returns the current Trace Checker state.
parameters: none
response: Possible values are: INVALID
PASSED
FAILED
example: trac:data:chec:stat? — PASSED<END>
affects: Mini-OTDR and Rack OTDR only

command: TRACe:DATA:FCRetloss?
syntax: TRACe:DATA:FCRetloss?
description: Returns the Front connector Return Loss
parameters: none
response: Return loss in dB.
example: trac:data:fcr? - -35723MDB<END>
affects: All instruments

command: TRACe:DATA:LANDmark:ADD
syntax: TRACe:DATA:LANDmark:ADD<wsp><value>[MM | CM | M |
KM | MI | FT | KFT],<comm>
description: Adds a landmark.
parameters: <value> The landmark position asflat value. You may append
a length unit. Valid length units are: MM, CM, M, KM,

MI, FT, KFT.
<comm> Landmark name, given as a string in " " (max. 40
characters)

response: none
example: trac:data:land:add 2km,"Landmark A"

affects: All instruments

112

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

command: TRACe:DATA:LANDmark:DELete
syntax: TRACe:DATA:LANDmark:DELete<wsp><value>[MM | CM | M |
KM | MI| FT | KFT]
description: Deletes a landmark.
parameters: The landmark position dkat value. You may append a length
unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.
response: none
example: trac:data:land:del 2km
affects: All instruments

113

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

command: TRACe:DATA:LINE?
syntax: TRACe:DATA:LINE?<wsp><start>,<range>,<width>,<minmax>

description: Starting at sampdaart , examines the nextidth samples, and
notes their minimum/maximum valuaninmax determines whether
it is MIN or MAX.
Repeats this forange samples, and stores the resulting line in a
binary block.

parameters: start (int32) - starting point from which samples are taken.
range (int32) - number of separate samples analyzed,
width (int32) - number of points in each sample.
For an illustration of the interpretation of the parameters, see the
diagram below:

c 1 2 3 4 5 6 7 8 9 10 11 12 13

* * * * * * * *
1 2 3 4 5
(R)
l— A\
Start =2
Width =2
S Range =5
NOTE start + (range *width) must be less than the number of data
points

range must be greater than or equal to 4

width must be greater than 0

minmax - MIN: minimum value is taken
MAX maximum value is taken
response: binary block

114

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

NOTE

TRAC:DATA:LINE? returns blocks of unsigned short (16-bit)
data in Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola)
use bug endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the
low and high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.

example:
affects:

command:
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:

response:
example:
affects:

trac:data:line? 2,5,2,MAX - block
All instruments

TRACe:DATA:TABLe?
TRACe:DATA:TABLe?
Returns an event table.
none.
Block containing the event table. The header is the same as a binary,
but the data is in ASCII format.
trac:data:tabl? - block
All instruments

TRACe:DATA:TABLe:LOCK
TRACe:DATA:TABLe:LOCK<wsp><boolean>
Locks/Unlocks the event table

MAooleanvalue: O0: table unlocked
1: table locked
none

trac:data:tabl:lock O
All instruments

115

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

command: TRACe:DATA:TABLe:LOCK?

syntax: TRACe:DATA:TABLe:LOCK?
description: Returns whether the event table is locked.
parameters: none.
response: Aooleanvalue: O: table unlocked
1: table locked
example: trac:data:tabl:lock? - O<END>
affects: All instruments
command: TRACe:DATA:TORL?
syntax: TRACe:DATA:TORL?
description: Returns the Total Optical Return Loss
parameters: none
response: Return loss in dB.
example: trac:data:torl? — + 35.7DB<END>
affects: All instruments
command: TRACe:DATA:VALue?
syntax: TRACe:DATA:VALue?<wsp><sample point>
description: Returns the measured value at the specified sample point.
NOTE The maximum value of <sample point> is determined by
trac:poin?
parameters: The sample point.
response: The measured value in mdB.
example: trac:data:val? 1999 — +31800<END>
affects: All instruments

116

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

command: TRACe:DELete
syntax: TRACe:DELete
description: Closes the current trace.
parameters: none
response: none
example: trac:del
affects: All instruments

command: TRACe:DELete:ALL
syntax: TRACe:DELete:ALL
description: Closes all loaded traces.
parameters: none
response: none
example: trac:del:all
affects: All instruments

command: TRACe:FEED:CONTrol
syntax: TRACe:FEED:CONTrol<wsp><trace>
description: Specifies the current trace.

NOTE The current trace receives all measurement data and therefore
will be overwritten with every new measurement

parameters: Valid values are: FIRSt
SECond
THIRd (E4310A only)
FOURth (E4310A only)

response: none
example: trac:feed:cont sec

affects: All instruments

117

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

command: TRACe:FEED:CONTrol?
syntax: TRACe:FEED:CONTrol?
description: Returns the current trace.
parameters: none
response: Possible values are: FIRSt
SECond
THIRd (E4310A only)
FOURth (E4310A only)
example: trac:feed:cont? - SEC<END>
affects: All instruments

command: TRACe:FREE?
syntax. TRACe:FREE?
description: Returns the number of unused trace array fields.
parameters: none
response: Ashort value: 0...2.(0...4 for the E4310A)
example: trac:free? — +2<END>
affects: All instruments

command: TRACe:POINts
syntax. TRACe:POINts
description: Sets the maximum number of samples for the current trace.
parameters: The number of data pointshart value).
Valid arguments are 4000, 8000, and 16000.
response: none
example: trac:poin 8000
affects: Mini-OTDR and Rack OTDR only

118

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

command: TRACe:POINts?
syntax: TRACe:POINts?
description: Returns the number of trace data points for the current trace.
parameters: none
response: The number of data pointsiart value).
example: trac:poin? - +8192<END>
affects: All instruments

119

Instrument Setup and Status
Trace Data Access — The TRACe Subsystem

120

Mass Storage, Display, and
Print Functions

Mass Storage, Display,
and Print Functions

This chapter gives descriptions of commands that you can use when
storing and printing traces from your OTDR. The commands are
split into the following separate subsystems:

e :DISPLAY : commands which relate to what you see on the
OTDR display.

« :HCOPY: commands which relate to printing operations.
« :MMEMORY : commands which relate to the OTDR memory.

Other commands are described in Chapter 3 “Instrument Setup and
Status”, and Chapter 4 “Operations on Traces and Measurements”.

122

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
Display Operations — The DISPlay Subsystem

5.1 Display Operations — The DISPlay Subsystem

The DISPlay subsystem lets you control what you see on the
OTDR'’s display.

DISPlay:BRIGhtness
DISPlay:BRIGhtness<wsp><value>
Controls the brightness for the display.
0..100 (0 ..64 on the E4310A)

none
disp:brig 32
All instruments

DISPlay:BRIGhtness?
DISPlay:BRIGhtness?
Requests the brightness for the display.

none
0..10® ..64 on the E4310A)
disp:brig? — 32<END>

All instruments

DISPlay:CONTrast
DISPlay:CONTrast<wsp><value>
Controls the contrast for the display.
0..100

none
disp:cont 50

Mini-OTDR only

123

command:
syntax:
description:
parameters:
response:
example:
affects:

command:
syntax:
description:

parameters:

response:
example:
affects:

command;
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
Display Operations — The DISPlay Subsystem

DISPlay:CONTrast?
DISPlay:CONTrast?
Requests the contrast for the display.

none
0..100

disp:cont? — 50<END>
Mini-OTDR only

DISPlay:ENABIle
DISPlay:ENABIle<wsp><boolean>
Enables or disables the LCD.
MAooleanvalue: 0 — switch off the LCD

1 — switch on the LCD
none

disp:enab 1
All instruments

DISPlay:ENABIle?
DISPlay:ENABIle?
Queries the state of the LCD.
none
A boleanvalue: 0 -the LCD is turned off
1 —the LCD is turned on
disp:enab? — 1<END>

All instruments

124

command:

syntax:
description:
parameters:

response:
example:
affects:

command:

syntax:
description:
parameters:
response:

example:
affects:

command:

syntax:
description:
parameters:

response:
example:
affects:

Instrument Setup and Status
Display Operations — The DISPlay Subsystem

DISPlay[:WINDow]:GRAPhics:COLor
DISPlay[:WINDow]:GRAPhics:COLor<wsp><color>
Changes the color of the current trace.

The new trace color (ghort value):
BLACK, RED, BLUE, GREen, GREY, WHITe

none
disp:grap:col blac
OTDR only

DISPlay[:WINDow]:GRAPhics:COLor?
DISPlay[:WINDow]:GRAPhics:COLor?
Queries the color of the current trace.
none

The current trace color &nort value):
BLAC, RED, BLUE, GRE, GREY, WHIT
DISPlay[:WINDow]:GRAPhics:COLor?

OTDR only

DISPlay[:WINDow]:GRAPhics:LTYPe

DISPlay[:WINDow]:GRAPhics.LTYPe<wsp><boolean>

Changes the linestyle of the current trace.
MAooleanvalue: 0 — new linestyle is dotted
1 — new linestyle is solid
none
disp:grap:ltyp 0
All instruments

125

Instrument Setup and Status
Display Operations — The DISPlay Subsystem

command: DISPlay[:WINDow]:GRAPhics:LTYPe?

syntax:
description:
parameters:
response:

example:
affects:

command;
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

DISPlay[:WINDow]:GRAPhics:LTYPe?
Queries the linestyle of the current trace.
none
MAooleanvalue: 0 — current linestyle is dotted
1 — current linestyle is solid
disp:grap:ltyp? — O0<END>
All instruments

DISPlay[:WINDow]. TEXT:DATA
DISPlay[:WINDow]: TEXT:DATA<wsp><c-no>,<comm>

Sets a comment in the trace.
<c-no> 0 .. 4 - comment number

<comm> Comment, given as a string in " " (max. 40 characters)
none

disp:text:data 0,"This is a Comment"

All instruments

DISPlay[:WINDow]: TEXT:DATA?
DISPlay[:WINDow]: TEXT:DATA? <wsp><c-no>
Requests an individual comment

0 .. 4 - comment number
Comment, given as a string, terminated by <END>
disp:text:data? O — "This is a Comment"<END>

All instruments

126

Instrument Setup and Status
Display Operations — The DISPlay Subsystem

command: DISPlay[:WINDow]:X:SCALe
syntax: DISPlay[:WINDow]:X:SCALe:<wsp><type>
Controls whether the display is in full trace mode or zoomed.

description:
NOTE You must send this command before you perform any zooming
operations.
TheDISP ... :PDIV/? commands described below only work
in AROund mode.
parameters: FULLtrace or AROund.

response: none
example: disp:x:scal full
affects: All instruments

DISPlay[:WINDow]:X:SCALe?

command:
syntax: DISPlay[:WINDow]:X:SCALe?
description: Queries whether the display is in full trace mode or zoomed.

parameters: none
response: FULLtrace or AROund

example: disp:x:scal? - FULL<END>
affects: All instruments

127

Instrument Setup and Status
Display Operations — The DISPlay Subsystem

command: DISPlay[:WINDow]:X[:SCALe]:PDIVision
syntax: DISPlay[:WINDow]:X[:SCALe]:PDIVision<wsp><value>
description: Determines the scaling of the X-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL).
parameters: Valid values for the scaling: 0...15H@rt value):
0 — full trace ...
15- 1 m/DIV

response: none
example: disp:x:pdiv 3
affects: All instruments

command: DISPlay[:WINDow]:X[:SCALe]:PDlIVision?
syntax: DISPlay[:WINDow]:X[:SCALe]:PDIVision?
description: Queries the current scaling of the X-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL).

parameters: none
response: Possible values for the scaling: 0...55da value):
0 — full trace
15 -1 m/DIV
example: disp:x:pdiv? - +3<END>
affects: All instruments

128

Instrument Setup and Status
Display Operations — The DISPlay Subsystem

command: DISPlay[:WINDow]:Y[:SCALe]:PDIVision

syntax: DISPlay[:WINDow]:Y[:SCALe]:PDIVision<wsp><value>
description: Determines the scaling of the Y-axis.

NOTE

This command only works in AROund mode (see
DISP:X:SCAL).

parameters: Valid values for the scaling: 1...gHart value):
1->5dB/DIV....
7 —>0.1dB/DIV
response: none
example: disp:y:pdiv 3
affects: All instruments

command: DISPlay[:WINDow].Y[:SCALe]:PDlIVision?
syntax: DISPlay[:WINDow]:Y[:SCALe]:PDIVision?
description: Queries the current scaling of the Y-axis.
NOTE

This command only works in AROund mode (see
DISP:X:SCAL).

parameters: none

response: Possible values for the scaling: 1.sA¢at value):
1—>5dB/DIV....
7 —> 0.1 dB/DIV
example: disp:y:pdiv? — +3<END>
affects: All instruments

129

Instrument Setup and Status
Print Operations — The HCOPy Subsystem

5.2 Print Operations — The HCOPy Subsystem

The HCOPYy subsystem lets you select the print layout and control
the printing.

command: HCOPy:ABORt
syntax: HCOPy:ABORt
description: Cancels the current print job.
parameters: none
response: none
example: hcop:abor
affects: All instruments

command: HCOPy:DESTination

syntax: HCOPy:DESTination<wsp><printer>
description: changes the current printing device.
parameters: The printer's name as a string.

Valid names for the Mini-OTDR and Rack OTDR are:

PCL100DPI: Standard HP-PCL printer (for example, HP LaserJet or
HP DeskJet) @ 100 dots per inch

PCL150DPI: Standard HP-PCL printer (for example, HP LaserJet or
HP DeskJet) @ 150 dots per inch

EPSONPIN Epson 8-Pin printer

SEIKODPU Seiko DPU-411/414

Valid name for the E4310A are:

the name of a specific printdor exampleHP-LASERJET
INTernal :internal printer
EXTernal : external printer

response:. none

example: hcop:dest "PCL100DPI"

affects: All instruments

130

Instrument Setup and Status
Print Operations — The HCOPy Subsystem

command: HCOPy:DESTination?
syntax: HCOPy:DESTination?
description: Queries the current printing device.
parameters: none
response: The printer's name as a string terminated by <END>.

Valid names for the Mini-OTDR and Rack OTDR are:

PCL100DPI: Standard HP-PCL printer (for example, HP LaserJet or
HP DeskJet) @ 100 dots per inch

PCL150DPI: Standard HP-PCL printer (for example, HP LaserJet or
HP DeskJet) @ 150 dots per inch

EPSONPIN Epson Pin printer

SEIKODPU Seiko DPU-411/414

NONE no printer configured

Valid name for the E4310A are:

the name of a specific printdor exampleHP-LASERJET
INTernal :internal printer
EXTernal : external printer

example: hcop:dest? - "PCL100DPI"<END>
affects: All instruments

command: HCOPy[:.IMMediate]
syntax: HCOPYy[:IMMediate]
description: Immediately starts printing everything that has been selected before.
parameters: none
response: none
example: hcop
affects: All instruments

131

Instrument Setup and Status
Print Operations — The HCOPy Subsystem

command: HCOPy:ITEM:ALL[:IMMediate]
syntax: HCOPy:ITEM:ALL[:IMMediate]

description: Immediately starts printing everything.
parameters: none

response: none
example: hcop:item:all
affects: All instruments

command: HCOPy:ITEM[:WINDow][:IMMediate]
syntax: HCOPy:ITEM[:WINDow][:IMMediate]

description: Immediately starts printing the parameter window.
parameters: none

response: none
example: hcop:item
affects: All instruments

command: HCOPy:ITEM[:WINDow]:STATe
syntax: HCOPy:ITEM[:WINDow]:STATe<wsp><boolean>

description: Enables or disables printing the parameter window.
parameters: /Aooleanvalue: 0 — disable
1 - enable

response: none
example: hcop:item:stat 1
affects: All instruments

132

command:

syntax:
description:
parameters:
response:

example:
affects:

command;
syntax:
description:

parameters:

response:
example:
affects:

command;

syntax:
description:
parameters:

response:
example:
affects:

Instrument Setup and Status
Print Operations — The HCOPy Subsystem

HCOPy:ITEM[:WINDow]:STATe?
HCOPy:ITEM[:WINDow]:STATe?
Queries printing the parameter window.

none

MAooleanvalue: 0 — parameter window will not be printed

1 — parameter window will be printed
hcop:item:stat? — 1<END>
All instruments

HCOPy:ITEM[:WINDow]: TEXT[:IMMediate]
HCOPy:ITEM[:WINDow]: TEXT[:IMMediate]
Immediately starts printing the event table.

none
none

hcop:item:text
All instruments

HCOPy:ITEM[:WINDow]. TEXT:STATe
HCOPy:ITEM[:WINDow]: TEXT:STATe<wsp><boolean>
Enables or disables printing the event table.
MAooleanvalue: 0 - disable

1 — enable
none

hcop:item:text:stat 1
All instruments

133

Instrument Setup and Status
Print Operations — The HCOPy Subsystem

command: HCOPy:ITEM[:WINDow]: TEXT:STATe?
syntax: HCOPy:ITEM[:WINDow]: TEXT:STATe?

description: Queries whether the event table will be printed.
parameters: none

response: Aooleanvalue: 0 - event table will not be printed

1 — event table will be printed
example: hcop:item:text:stat? — 1<END>

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe[:IMMediate]
syntax: HCOPy:ITEM[:WINDow]:TRACe[:IMMediate]

description: Immediately starts printing the trace.
parameters: none

response: none
example: hcop:item:trac
affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:STATe

syntax: HCOPy:ITEM[:WINDow]:TRACe:STATe<wsp><boolean>
description: Enables or disables printing the trace window.
parameters: Aooleanvalue: 0 —disable

1 — enable
response: none

example: hcop:item:trac:stat 1
affects: All instruments

134

Instrument Setup and Status
Print Operations — The HCOPy Subsystem

command: HCOPy:ITEM[:WINDow]: TRACe:STATe?
syntax: HCOPy:ITEM[:WINDow]:TRACe:STATe?
description: Queries whether the trace window will be printed.
parameters: none
response: Aooleanvalue: 0 — trace window will not be printed
1 — trace window will be printed
example: hcop:item:trac:stat? — 1<END>
affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:GRATiIcule:STATe
syntax: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe<wsp>
<boolean>
description: Enables or disables printing the trace window grid.
parameters: Aooleanvalue: 0 —disable
1 — enable
response: none
example: hop:item:trac:grat:stat 1
affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe?
syntax: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe?
description: Queries printing the trace window grid.

parameters: none
response: Aooleanvalue: 0 - trace window grid will not be printed
1 — trace window grid will be printed
example: hcop:item:trac:grat:stat? — 1<END>
affects: All instruments

135

Instrument Setup and Status
Print Operations — The HCOPy Subsystem

command: HCOPy:PAGE:SIZE
syntax: HCOPy:PAGE:SIZE<wsp><size>
description: Controls the paper size of the printout.
parameters: Valid parameters are LETTer, A or A4.
Please note that LETTer and A are the same page size.
response: none
example: hcop:page:size A4
affects: All instruments

command: HCOPy:PAGE:SIZE?
syntax: HCOPy:PAGE:SIZE?
description: Queries the current paper size of the printout.
parameters: none
response: A value containing A or A4, terminated by <END>
example: hcop:page:size? - A4<END>
affects: All instruments

136

Instrument Setup and Status
File Operations — The MMEMory Subsystem

5.3 File Operations — The MMEMory Subsystem

The MMEMory subsystem gives you access to the OTDR's
memory and to the storage devices.

command: MMEMory:.CATalog?
syntax: MMEMory:CATalog?
description: Returns the contents of the current directory.
parameters: none
response: A binary Block containing the contents of the directory as ASCII
text, separated by CR/LF. The first digit states the number of digits
following. The digits following give the total number of characters in
the list of filenames.
example: mmem:cat? - #229.

DEMO1.SOR

DEMO2.SOR

<END>
affects: All instruments

command: MMEMory:CDIRectory
syntax: MMEMory:CDIRectory<wsp><directory>
description: Changes the current directory.
parameters: The directory given as a string in " ".
response: none
example: mmem:cdir "TRACES"
affects: All instruments

137

Instrument Setup and Status
File Operations — The MMEMory Subsystem

command: MMEMory:CDIRectory?
syntax: MMEMory:CDIRectory?
description: Queries the current directory.
parameters: none
response: The directory given as a string terminated by <END>.
example: mmem:cdir? - "TRACES"<END>
affects: All instruments

command: MMEMory:COPY:FILE
syntax: MMEMory:COPY:FILE?<wsp><file>,<newfile>,<device>
description: Copies the specified Bellcore binary file from the current device.
parameters: The file name given as a string in " ".
The name of the new file given as a string in " ".
Device where new file is located: FLASh - internal memory
FLOPpy — diskette
PCMCia - memory card

response: none
example: mmem:copy:file "t0721_01.sObc\test.sor",flop
affects: Mini-OTDR and Rack OTDR only

command: MMEMory:DELete
syntax: MMEMory:DELete<wsp><file>
description: Deletes the specified file from the current directory.
parameters: The file name given as a string in " ".
response: none
example: mmem:del "t0721_01.sor"

affects: All instruments

138

command:
syntax:
description:

parameters:

response:
example:
affects:

command;
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:

response:
example:
affects:

Instrument Setup and Status
File Operations — The MMEMory Subsystem

MMEMory:FREE
MMEMory:FREE
Performs garbage collection on internal memory to reclaim free
space.
none
none
mmem:free
Mini-OTDR and Rack OTDR only

MMEMory:FREE?
MMEMory:FREE?
returns the free and used disk space.
none
<free-space> - the amount of free space
<used-space> - the amount of used space
mmem:free? - 125384, 1354789
All instruments

MMEMory:INITialize
MMEMory:INITialize<wsp><device>
Formats the specified storage device.
Valid devices are: FLASh - internal memory
FLOPpy — diskette
PCMCia - memory card
none
mmem:init flop
Mini-OTDR and Rack OTDR only

139

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
File Operations — The MMEMory Subsystem

MMEMory:LOAD:STATe, :LOAD:TRACe

for example: MMEM:LOAD:STATe<wsp><file>
Loads a settings file or a trace file.
The file name given as a string in " ".
none

mmem:load:trac "t0721_01.sor"

All instruments

MMEMory:LOAD:FILE?
MMEMory:LOAD:FILE?<wsp><file>
Uploads the specified Bellcore binary file from the OTDR.
The file name given as a string in " ".
binblock (Bellcore binary)
mmem:load:file? "t0721_01.sor" - binblock

All instruments

MMEMory:MDIRectory
MMEMory:MDIRectory<wsp><directory>
Creates a directory on the current storage device.
The directory given as a string in " "
none
mmem:mdir "TRACES"

All instruments

140

Instrument Setup and Status
File Operations — The MMEMory Subsystem

command: MMEMory:MSIS

syntax:
description:
parameters:

response:
example:
affects:

command:

syntax:

description:
parameters:
response:

example:
affects:

command:
syntax:
description:
parameters:
response:
example:
affects:

MMEMory:MSIS<wsp><device>
Changes the current storage device.
Valid devices are: FLASh - internal memory (Mini and Rack only)
FLOPpy — diskette
HARDdisk (E4310A only)
PCMCia - memory card (Mini and Rack only)
none
mmem:msis flop
All instruments

MMEMory:MSIS?
MMEMory:MSIS?
Queries the current storage device.
none
Possible devices are: FLAS - internal memory (Mini/Rack only)
FLOP — diskette
HARD (E4310A only)
PCMC - memory card (Mini and Rack only)
mmem:msis? - FLOP<END>
All instruments

MMEMory:NAME
MMEMory:NAME<wsp><name>
Changes the name of the current trace.
The name given as a string.
none
mmem:name "t0711_01l1.sor"
All instruments

141

command:
syntax:
description:

parameters:
response:

example:
affects:

command:
syntax:
description:

parameters:

response:

example:
affects:

command:
syntax:
description:

parameters:
response:

example:
affects:

Instrument Setup and Status
File Operations — The MMEMory Subsystem

MMEMory:NAME?
MMEMory:NAME?
Queries the name of the current trace.
none
The name given as a string.
mmem:name? - "T0711_01.SOR"<END>
All instruments

MMEMory:SAVE:FILE
MMEMory:SAVE:FILE<wsp><file>,<binblock>
Downloads the specified file to the OTDR.
The file name given as a string in " ".

binblock (Bellcore binary)
none

mmem:save:file "t0721_01.sor"

All instruments

, binblock

MMEMory:STORe:STATe, :STORe:TRACe

for example: MMEMory:STORe:STATe<wsp><file>
Saves a setting or a trace under the specified name.

The file name given as a string in " "
none

mmem:stor:trac "t0721_01.sor"

All instruments

142

Instrument Setup and Status
File Operations — The MMEMory Subsystem

command: MMEMory:STORe:TRACe:REVision
syntax: MMEMory:STORe:TRACe:REVision<wsp><value>
description: Sets the Bellcore revision number used to store Bellcore files.

NOTE Bellcore revision 1.1 conforms to standards, but you may need to
use Bellcore revision 1.0 for backward compatibility.

parameters: Valid values: ¢hort value): 10: Bellcore revision 1.0
11: Bellcore revision 1.1

response: none
example: mmem:stor:trac:rev 11

affects: All instruments

command: MMEMory:STORe:TRACe:REVision?
syntax: MMEMory:STORe:TRACe:REVision?
description: Queries the Bellcore revision number according to which Bellcore
files are stored on your OTDR.

parameters: none

response: Possible valuessfaort value): 10: Bellcore revision 1.0
11: Bellcore revision 1.1

example: mmem:stor:trac:rev? - +11<END>
affects: All instruments

143

Instrument Setup and Status
File Operations — The MMEMory Subsystem

144

Programming Examples

Programming Examples

This section contains some example programs that you can use to
run an OTDR.

This programming examples do not cover the full command set for
the instrument. They are intended only as an introduction to the
method of programming the instrument.

We recommend that you send commands via a program, examples
of which are contained in this chapter. However, for testing
processes you can enter individual commands (for example,

*idn?) from your terminal program (see “How to Send
Commands and Queries” on page 152).

146

Programming Examples
How to Connect your OTDR to a PC

NOTE

Table 6-1

6.1 How to Connect your OTDR to a PC

This section explains the processes needed to connect your OTDR
to a PC, and set up a serial interface,

This section contains extracts from a demo program. You can see
the program in full in “SCPI data transfer between PC and OTDR”
on page 159.

1 Connect the OTDR serial port to the serial interface of the PC.
Use an HP 24542U cable or an equivalent.

For more information about attaching cables, consult the appropriate
User's Guide:

Mini-OTDR User’s Guide(E6000-91011)QTDR User’'s GuidgE4310-
91011). orRack OTDR User’s GuidéE6050-91011).

2 If you have no available cable, you can configure your own,
according to the specifications listed in Table 6-1.

Cable configuration for connection to a PC

Mini-OTDR signal Pin PC-Host signal (9 pin standard) Pin

DCD 1RTS 7
RxD 2TxD 3
TxD 3RxD 2
DTR 4DSR, CTS 6, 8 (connected)
GND 5GND 5
DSR 6DTR 4
RTS 7DCD 1
CTS 8DTR 4
RI 9RI 9

147

Programming Examples
How to Connect your OTDR to a PC

How to set the Instrument Configuration

3 If the instrument is not also configured at your PC’s serial
interface, set the following configuration:

* baud rate of 19200

* hardware handshaking
« 8 data bits

* no parity

« 1 stop bit

148

Programming Examples
How to Connect your OTDR to a PC

NOTE This is the default configuration, so you should only need to send these
commands if the instrument configuration has been altered.

HANDLE InitSerial(int baudrate)

{
static HANDLE hSer = CreateFile(
INTERFACE, // use COM1/ Serial A
GENERIC_READ | GENERIC_WRITE,
/I open for read & write access
0, NULL,
OPEN_EXISTING,
I/l well, hopefully ... :-)
0, NULL);

if(thSer)

{
return NULL;
}

/I configure the interface ...

DCB dcb;

COMMTIMEQUTS commtimeout;
GetCommTimeouts(hSer, &commtimeout);
commtimeout.ReadIntervalTimeout = 3000;
commtimeout.ReadTotalTimeoutMultiplier = 200;
commtimeout.Write TotalTimeoutMultiplier = 200;
commtimeout.WriteTotalTimeoutConstant = 3000;
GetCommState(hSer, &dcb);

dcb.DCBlength = sizeof(dcb);

dcb.BaudRate = baudrate;

dcb.ByteSize = 8;

dcb.Parity = 0;

dcb.StopBits = 1;

dcb.fBinary = 1;

dcb.fParity =0 ;

dcb.fOutX = 0;

dcb.finX = 0;

dcb.fDtrControl = DTR_CONTROL_DISABLE;

dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control

SetCommState(hSer, &dcb);

SetCommTimeouts(hSer, &commtimeout);

ClearCommBreak(hSer);

PurgeComm(hSer,
PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

return hSer;

}

Figure 6-1 Instrument configuration - example

149

Programming Examples
How to Connect with a Terminal Program

6.2 How to Connect with a Terminal Program

1 Start a terminal program on the PC, for exan@teninal.exe
(Win 3.11 or Windows NT), ohypertrm.exéWindows 95 or
Hyperterminal).

2 Setthe transmission parameters in the terminal program as listed

in Table 6-2:
Table 6-2 Transmission parameters
Speed: 19200 bps (Baud)

Code, databits: 8 bit
Communication: Full duplex

Parity: no parity

Startbits: 1 (not configurable)
Stopbits: 1

Flow control: RTS-CTS (Hardware)

3 Send a test command in terminal mode to the OTDR:
type*IDN?

4 You should see a response, telling you the identity of your
OTDR.
For example, a Mini-OTDR should respond:

HP E6000A Mini Optical Time Domain
Reflectometer.....

If you see this message, or its equivalent, the basic connection
works.

5 Close the terminal program on the PC.

Closing the terminal program is important, as it avoids later
conflicts with the PC and the interface control.

150

Programming Examples
Using a Program to Connect to the OTDR

6.3 Using a Program to Connect to the OTDR

1 Send anew line {i")
2 Send*idn? to check the identity of the OTDR

3 Check the response to thdn? query.

The response should B E...<END> and give details of
the type of OTDR, and the modules used.

The following responses are possible (depending on you OTDR

type):

e HP E6000A Mini Optical Time Domain
Reflectometer...

* HP E60 xx A Rack Optical Time Domain
Reflectometer...

e HP 8147 Optical Time Domain
Reflectometer...

4 Ifyou do not receive an appropriate response, repeat steps 1 to 3
until you receive the correct response or you give up.

Il write query

sprintf (txtbuffer, "\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
sprintf(txtbuffer,"”*IDN?\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

/l read response
ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
if(cnt == 0 || strlen(txtbuffer) == 0)

{

printf("SCPI query failed, exiting!\n");
CloseHandle(hSerial);

return;

}

/I print result (in txtbuffer)
printf("Connected to: %s\n", txtbuffer);

Figure 6-2 Connection check - example

151

Programming Examples
How to Send Commands and Queries

5 If the response is still incorrect, make the following checks:

How to check the connection

6 Send a break

This resets the instruments and RS232 to the values given in
step 3.

7 Close the device and reopen it.

8 Repeat steps 1 to 4.

6.4 How to Send Commands and Queries

There are two types of SCPI commands: queries which end with a
guestion mark (?), and commands which do not. Only queries
expect a response.

Commands and queries are discussed below.

NOTE For more information about SCPI, please consult Chapter 1
“Introduction to Programming”.

The SCPI commands specific to OTDRs are listed in Chapter 2
“Specific Commands”, and explained in subsequent chapters.

Commands

Commands must be followed by a newlite{).

For example, the abort commaaidlor should be formatted as:
sprintf(txtbuffer,"”ABOR\n");

There is no response.

152

Programming Examples
How to Send Commands and Queries

You can check that a command has been sent correctly by sending
the querySYST:ERR?, which eturns the contents of the
OTDR’s error queue

Queries
A query produces a response from the instrument.

If the response is short, you can read the line. Otherwise, you
should read the response one character at a time until you find an
<END>(see Figure 6-3).

sprintf(txtbuffer,"”*IDN?\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

/l read response

ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);

Figure 6-3 Query - example

Blocks transfer

Larger blocks of data are givenBisary Blocks, preceded by
“#HLerNumbytes”, terminated by <END#*Lenrepresents the
length of the Numbytes block. For example: #16 TRACES<END>.

153

Programming Examples
Common Tasks

For more examples, see Figure 6-4 and “How to Upload a Bellcore
File from the current trace” on page 156

/l read the trace data ...
sprintf(txtbuffer,"TRACE:DATA?\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

/I now comes the data: e.g. #48000.... which means:

" | 4 digits following to tell the number
1 of bytes

1 /[l 8000 bytes following, containing
I 4000 trace pts
cnt=0;

while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
header[1]=0;
numbytes = atoi(header);
ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
header[cnt] = 0;
numbytes = atoi(header);
printf("Reading %d points of trace data ...\n", numbytes/2);
/' 1 point = 16 bit unsigned short
ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
ReadFile(hSerial, header, 15, &cnt, 0); 1/l read rest:
<END>\n

Figure 6-4 Blocks transfer - example

6.5 Common Tasks

This section gives some programming examples for common
OTDR tasks. The examples do not cover all SCPI commands, but
are just a general example.

For a full program containing some of these, and other, commands,
see “SCPI data transfer between PC and OTDR” on page 159.

How to Initialize the Instrument

1 Connect to the instrument,
See “How to Connect your OTDR to a PC” on page 147.

154

Programming Examples
Common Tasks

2 Clear the error queue.
Send the commarftCLS.

3 Check the instrument id
Send the quer{iDN?

For example, sendingidn? may return:

HP E6000A Mini Optical Time Domain
Reflectometer

Mainframe: 3502G00056 , Module: 3525G00056
SW-Rev.: 1.00<END>

How to Set Up an OTDR Measurement

4 Set up the measurement parameters.
For example, send the following commands:

source:puls:width 3us

source:range:start Okm

source:range:span 60km

source:wav 1310nm

sens:det:func:opt dyn

sens:aver:coun 180

sens:fib:refr 1.462
This sets a pulsewidth of 3 us, a start and span of 0 km - 60 km,
a wavelength of 1310nm, dynamic optimize modem an
averaging time of 3 minutes, and a refractive index of 1.462

5 Select the OTDR screen (Mini-OTDR and Rack OTDR only):
Send the commanSENS:DET:MODE OTDR

How to Run a Measurement

6 Start the measurement
Send the commaridit

You can stop the measurement with @her command, or wait
until the Averaging Time is complete,

7 Check whether the measurement is still running

155

Programming Examples
Common Tasks

*opc? returns0 if the measurement is still runninggand 1 if
the measurement is finished.

The measurement has now stopped, and you can check the results

How to Scan a Trace

8 Send the commangrog:expl:exec "scan”

When the scan is complet®pc? returns 1 (see note 7,
above).

How to Process a Trace

9 Print the Trace
Send the commanttcop:item:all

10 Save the Trace
Send the commamimem:stor:trac "newtrace.sor"

How to Upload a Bellcore File from the current trace

11 Upload the file from the OTDR
Send the querfIMEM:LOAD:FILE? ™

12 Read in the first character
This character should be a hasgh. (

13 Read in the next character

This character should be an integergiving the number of
digits you should now read.

14 Read in the nexn characters

This series of characters should form an integegiving the
number of data bytes that follow.

15 Read in the next data bytes, and store them.
16 Read until the finakEND>

156

Programming Examples
Advanced Topics

17 Check that there have been no errors.

/I now comes the data: e.g. #48000.... which means:

I | 4 digits following to tell the number
I of bytes

/A |lll 8000 bytes following, containing
1 4000 trace pts
cnt=0;

while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
header[1]=0;
numbytes = atoi(header);
ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
header[cnt] = 0;
numbytes = atoi(header);
printf("Reading %d points of trace data ...\n", numbytes/2);
/I 1 point = 16 bit unsigned short
ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
ReadFile(hSerial, header, 15, &cnt, 0); /l read rest:
<END>\n

/I write the data to the console ...
for(unsigned int i=0; i<numbytes/2; i++)

{
printf("idx: %d, value: %d\n", i, tracebulf]i]);
}

Figure 6-5 Uploading a Bellcore file - example

6.6 Advanced Topics

This section gives some further examples of SCPI commands that
you may wish to use when programming your OTDR.

How to Download a Bellcore File

1 Download a specified file to the OTDR
Send the command
mmem:save:file "newtrace.sor" #ASSS....

Where#Assss... is a binary block containing the Bellcore
file.

157

Programming Examples
Advanced Topics

How to Use the Power Meter and Source Mode

These examples show you how to user the Power Meter options on
the Mini-OTDR and Rack OTDR. They are not valid for the 8147A
Mainframe OTDR.
1 Select source mode

Send the commanSENS:DET:MODE SOUR

2 Reset the reference power
Send the commarSENS:POW:REF 0.

3 Set the power meter display to absolute power level readout
Send the commar8ENS:POW:REF:STAT 0.

4 Select Watts (W) as the readout unit.
Send the commarBENS:POW:UNIT W

5 Start a measurement on the power meter.
Send the commanilIT2:CONT 0

6 Read the detected wavelength and power.
Send the querieSENS:POW:WAV2andREAD:POW?

These return, for exampl@310NM<END>and
1.07898NW<END>.

These queries respectively return the current power meter
wavelength (in nm), and the current power reading (in dBm, W, or
dB).

How to Store Traces on Other Devices

1 Select a new storage device.

For example, send the commavAMEM:MSIS FLOPto
change to the floppy disk drive.

2 Check that the device has been changed correctly.
Send the querMMEM:MSIS?

You should receive a string corresponding to the device that you
have just set, in this caB&OR

3 Check that there is enough free disk space.

158

NOTE

NOTE

Programming Examples
SCPI data transfer between PC and OTDR

Send the querMEM:FREE?

You receive a response giving 2 values. The first value gives the
amount of free space.

4 Reclaim extra disk space, if required (Mini-OTDR and Rack
OTDR only).

Send the commandMEM:FREE

MMEM:FREEeplaces internal disk space only (not, for example, for the
Flash Disk or Floppy disk).

6.7 SCPI data transfer between PC and OTDR

This C program transfers data between the Mini-OTDR and a PC.

Before you run this program connect the PC and the OTDR with an
RS232 cable (see tiMini-OTDR User’s Guide

The program sets the measurement parameters, starts the
measurement, stops the measurement 15 seconds later, and
transfers the trace data to the PC.

TRAC:DATA?and TRAC:DATA:LINE? returns blocks of unsigned
short (16-bit) data in Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola) use big
endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the low and
high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.

159

Programming Examples
SCPI data transfer between PC and OTDR

/*
* Module: demoapp.cpp *
* Description: application to demonstrate a SCPI data transfer between PC< >0OTDR *

* Copyright: 12/02/1996 Hewlett-Packard GmbH

* NOTE: This application is not supported by HP! HP cannot be held *

* responsible for any problems/damages caused by this program! *

* *

* Compile: Compile this program as a 32Bit Console Application under Win95/NT. *
* We recommend a struct member byte alignment of 2 bytes. *

* */

#include <windows.h>
#include <stdio.h>
#include <string.h>

#define INTERFACE "COM1"
#define MAXNUMBYTES 255
#define TRLEN 16512

HANDLE InitSerial(int baudrate)

{
static HANDLE hSer = CreateFile(

INTERFACE, // use COM1 / Serial A
GENERIC_READ | GENERIC_WRITE, // open for read & write access
0, NULL,
OPEN_EXISTING, 1l well, hopefully ... :-)
0, NULL);
if(thSer)
{
return NULL;
}
/I configure the interface ...
DCB dcb;

COMMTIMEQUTS commtimeout;
GetCommTimeouts(hSer, &commtimeout);
commtimeout.ReadIntervalTimeout = 3000;
commtimeout.ReadTotalTimeoutMultiplier = 200;
commtimeout.WriteTotalTimeoutMultiplier = 200;
commtimeout.WriteTotalTimeoutConstant = 3000;
GetCommState(hSer, &dcb);

dcb.DCBIength = sizeof(dcb);

dcb.BaudRate = baudrate;

dcb.ByteSize = 8;

dcb.Parity = 0;

dcb.StopBits = 1

dcb.fBinary = 1;

dcb.fParity =0 ;

dcb.fOutX = 0;

dcb.finX = 0;

dcb.fDtrControl = DTR_CONTROL_DISABLE;
dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control

SetCommState(hSer, &dcb);

SetCommTimeouts(hSer, &commtimeout);

ClearCommBreak(hSer);

PurgeComm(hSer, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

160

Programming Examples
SCPI data transfer between PC and OTDR

return hSer;

}

void main(int argc, char** argv)

int baudrate=19200; /I default value for baudrate

HANDLE hSerial=NULL; /I windows handle for interface

char txtbufferfMAXNUMBYTES+1]; // ascii buffer for commands/ascii queries
char header[16]; /I buffer to read the binary header into

unsigned short tracebuf[TRLEN]; // binary buffer for trac:data? query
unsigned long cnt; /I number of bytes actually written/read

unsigned long numbytes; /I number of bytes to write/read

/l'if argc>1, take argv[1] as the current baudrate
if(argc>1)

baudrate = atoi(argv[1]);
if(baudrate < 1200 || baudrate > 115200) baudrate = 19200;

}

/l'initialize the interface ...
printf("Setting baudrate to %d!\n", baudrate);
hSerial = InitSerial(baudrate);

if(*hSerial)

{
printf("Failed to open %s, exiting!\n", INTERFACE);
return;

}

/I now start communicating ...
sprintf(txtbuffer,"*CLS\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
sprintf(txtbuffer,"*IDN?\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
if(cnt == 0 || strlen(txtbuffer) == 0)

{

printf("SCPI query failed, exiting!\n");
CloseHandle(hSerial);

return;

}
printf("Connected to: %s\n", txtbuffer);

/I setting measurement parameters ...
sprintf(txtbuffer,"SOURCE:RANGE:START 0\n"); /I measurement start
numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
sprintf(txtbuffer,"SOURCE:RANGE:SPAN 10km\n"); / measurement span
numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
sprintf(txtbuffer,"SOURCE:PULSE:WIDTH 100ns\n"); // pulsewidth
numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
sprintf(txtbuffer,"SOURCE:WAVELENGTH 1310nm\n"); // wavelength
numbytes = strlen(txtbuffer);

161

Programming Examples
SCPI data transfer between PC and OTDR

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

/I start the measurement ...

printf("Starting measurement ...\n");
sprintf(txtbuffer,"INIT\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

Sleep(15000); // give it 10s to run + 5s for init ...

/I stop the measurement ...

printf("Stopping measurement ...\n");
sprintf(txtbuffer,"”ABORT\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
Sleep(1000); // wait a little for things to settle ...

/l read the trace data ...
sprintf(txtbuffer,"TRACE:DATA?\n");

numbytes = strlen(txtbuffer);

WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

/I now comes the data: e.g. #48000.... which means:

I | 4 digits following to tell the number of bytes
1 1|11 8000 bytes following, containing 4000 trace pts
cnt=0;

while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
header[1]=0;

numbytes = atoi(header);

ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
header[cnt] = O;

numbytes = atoi(header);

printf("Reading %d points of trace data ...\n", numbytes/2);
ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
ReadFile(hSerial, header, 15, &cnt, 0); // read rest: <END>\n

/I write the data to the console ...
for(unsigned int i=0; inumbytes/2; i++)

{
printf("idx: %d, value: %d\n", i, tracebuffi]);
}

/I close the interface
CloseHandle(hSerial);
return;

}

162

The VEE Driver

The VEE Driver

This appendix gives you extra information about using HP OTDRs
with the HP VEE VXI-plug&play driver.

You will find the driver on the update CD undeapnp/

164

NOTE

The VEE Driver
What is HP VEE ?

A.1 What is HP VEE ?

Hewlett-Packard Visual Engineering Environment (HP VEE) is a
visual programming language optimized for instrument control
applications. To develop programs in HP VEE, you connect
graphical ‘objects’ instead of writing lines of code. These programs
resemble easy-to-understand block diagrams with lines.

HP VEE allows you to leverage your investment in textual
languages by integrating with languages such as C, C++, Visual
Basic, FORTRAN, Pascal, and HP BASIC.

HP VEE controls HP-IB, VXI, Serial, GPIO, PC Plug-in, and LAN
instruments directly over the interfaces or by using instrument
drivers.

HP VEE supports VXilug&play drivers in the WIN, WIN95,
WINNT, and HP-UX frameworks. In addition, versions 3.2 and
above of HP VEE support the graphical Function Panel interface,
providing a function tree of the hierarchy of the driver.

This appendix assumes that you are using Windows 95. If you are using
Windows NT, please replace every reference t8in95 with winnt .

Windows 95 and Windows NT are registered trademarks of Microsoft
corporation.

HP VEE automatically calls thaitialize andclosefunctions to
perform automatic error checking.

Using the RS232 port

HP VEE supports interfacing with an instrument from the RS232
port. Before you can do this, you must do the following:

1 Select NSTRUMENT MANAGER from the 1O menu.

2 Double-click on theAdd button to bring up the Device

165

The VEE Driver
How to Install HP VEE

Configuration screen.

3 Enter the following information:
* Name choose any name to describe the instrument.
eInterface :HP-IB (even if you want to use the serial port).

« Address : key in any number (it does not matter which
number you enter as you will only be using one of the serial
ports).

» Gateway : This host

4 PressAdvanced I/O Config , and select the hpotdr
plug&play Driver from a drop down list.

NOTE If you do not see this driver in the list, it has not been installed properly.

5 Ifyou are planning to use the COMx portin the machine, specify
the address of the instrumentASRLX.

6 Select whetheReset andinstrument Name Check
should be performed whenever VEE opens the instrument for
interaction.

7 Return to the Instrument Manager screen, and s€l&tb save
the configuration.

A.2 How to Install HP VEE

The HP VEE Vxplug&play driver comes as a self-extracting

archive with an installation wizard. The installation wizard extracts
all the files to preset destinations, asking you appropriate questions
as it does so.

You install HP VEE by running the executa@i@ DR.EXE When
you runOTDR.EXE you see a message telling you that the HP
OTDR Instrument Driver will be installed.

166

The VEE Driver
How to Install HP VEE

1 PressYes to continue.

You see a VXplug&play window, and a message telling you
that you are not an administrator (Figure A-1)

%3 HP DTDR Setup

(ﬁ/, HEWLETT

PACKARD

tor pefom this instalation
mation wil NOT be viible to all usere:

Figure A-1 VXI plug&play window

2 Ignore this message, and pr&¥&s to continue.

NOTE If HP VEE is already installed on your system, you see a message asking
you if you want to uninstall the old version.

PressYes, if required, then wait until you see a message telling you that
the uninstall has been successful. Then pre€éto continue.

You see a Welcome message, advising you to close the
programs that you have running.

3 Close these programs and prilext> to continue.

167

The VEE Driver
How to Install HP VEE

NOTE If you do not have VISA installed, you see a message advising you to
install VISA.

PressCancel to temporarily exit this installation procedure; install
VISA on your PC, then run OTDR.EXEagain.

You see a window showing you what you can install (Figure A-
2).

4 Select any or all oRead Me, Help andUninstall |, then
press Next> to continue.

Choose Program Folder Items E

Select the item(z] pou want to add ta the Plug and Play program
falder:

[::

™ Uninstall [already accessible thraugh the Contral Panel]

< Back I Mest » I Cancel

Figure A-2 HP VEE - Install options

You see a window asking you in which folder you want to
install the files.

5 Select the defaul/ XIPNP, or choose a folder that you want.
PressNext> to continue.

You see a message saying that setup is complete, giving you an
option to view the Readme file.

6 Presdinish tocomplete installation, viewing the Readme file

168

The VEE Driver
Features of the HP OTDR VEE Driver

if you wish.

A.3 Features of the HP OTDR VEE Driver

The HP OTDR VEE driver conforms to all aspects of the
VXI plug&play driver standard which apply to conventional rack
and stack instruments.

The following features are available:

The VEE driver conforms with the VXlug&play standard.

There is one exception as the OTDR driver does not have a soft

front panel or a knowledge-based file.

The VEE driver is built on top of VISA, and uses the services
provided.

VISA supports GP-IB and VXI protocols. The driver can be
used with any GP-IB card for which the manufacturer has
provided a VISA DLL.

The VEE driver includes a Function Panel (.FP) file.

The .FP file allows the driver to be used with visual
programming environments such as HP-VEE, LabWindows,
and LabVIEW.

The VEE driver includes a comprehensive on-line help file
which complements the instrument manual.

The help file contains application programming examples, a
cross-reference between instrument commands and driver
functions, and detailed documentation of each function with
examples.

The VEE driver includes a source, so that the driver can be
modified if desired.

The source conforms to VRElug&play standards. You should
only modify the driver if you are familiar with these standards.

169

The VEE Driver
Directory Structure

e The VEE driver includes a Visual Basic (.BAS) file which
contains the function calls in Visual Basic syntax, and allows the
driver functions to be called from Visual Basic.

You should only use Visual Basic with this driver if you are
familiar with C/C++ function declarations. You must take
particular care when working with C/C++ pointers.

A.4 Directory Structure

The setup program which installs the HP OTDR instrument driver
creates th&XIPNP directory if it does not already exist.

Windows 95 files are iWXIPNP\WIN95 ; Windows NT files are in
VXIPNP\WINNT.

A.5 Opening an Instrument Session

To control an instrument from a program, you must open a
communication path between the computer/controller and the
instrument. This path is known as an instrument session, and is
opened with the function

ViStatus hpotdr_init(ViRsrc InstrDesc,
ViBoolean id_query, ViBoolean reset,
ViPSession instrumentHandle);

Instruments are assigned a handle when the instrument session is
opened. The handle, which is a pointer to the instrument, is the first
parameter passed in all subsequent calls to driver functions.

The parameters of the functibpotdr_init include:

¢ ViRsrc InstrDesc : the address of the instrument

170

The VEE Driver
Closing an Instrument Session

* ViBoolean id_query : a Boolean flag which indicates if in-
system verification should be performed.
Passing/I_TRUE (1) will perform an in-system verification;
passingvI_FALSE (0) will not.
If you setid_query to false, you can use the generic functions
of the instrument driver with other instruments.

¢ ViBoolean reset . a Boolean flag which indicates if the
instrument should be reset when it is opened.
Passing/I_TRUE (1) will perform a reset when the session is
opened; passingl_FALSE (0) will not perform a reset,

¢ ViPSession instrumentHandle > a pointer to an
instrument session.
InstrumentHandle is the handle which addresses the
instrument, and is the first parameter passed in all driver
functions.

Successful completion of this function retukfis SUCCESS

A.6 Closing an Instrument Session

Sessions (instrumentHandle) opened withhtbetdr_init()
function are closed with the function:

hpotdr_close(ViSession instrumentHandle);

When no further communication with an instrument is required, the
session must be explicitly closdupptdr_close() function).

VISA does not remove sessions unless they are explicitly closed.
Closing the instrument session frees all data structures and system
resources allocated to that session.

171

The VEE Driver
VISA Data Types and Selected Constant Definitions

A.7 VISA Data Types and Selected Constant
Definitions

The driver functions use VISA data types. VISA data types are
identified by theVi prefix in the data type name (for example,
Vilntl6 , ViUIntl6 , ViChar).

The filevisatype.h ~ contains a complete listing of the VISA
data types, function call casts and some of the common constants.

NOTE You can find a partial list of the type definitions and constant definitions
for the visatype.h in the HP OTDR Instrument Driver Online Help.

A.8 Error Handling

Events and errors within a instrument control program can be
detected by polling (querying) the instrument. Polling is used in
application development environments (ADES) that do not support
asynchronous activities where callbacks can be used.

Programs can set up and use polling as shown below.

1 Declare a variable to contain the function completion code.
ViStatus errStatus;
Every driver function returns the completion cad8tatus

If the function executes with no I/O errors, driver errors, or
instrument errorsyiStatus is 0 (VI_SUCCESS.

If an error occursyiStatus is a negative error code.

Warnings are positive error codes, and indicate the operation
succeeded but special conditions exist.

2 Enable automatic instrument error checking following each
function call.

172

The VEE Driver
Introduction to Programming

hpotdr_errorQueryDetect
(instrumentHandle, VI_TRUE);

When enabled, the driver queries the instrument for an error
condition before returning from the function.

If an error occurrecgrrStatus (Step 1) will contain a code
indicating that an error was detected
(hpotdr_INSTR_ERROR_DETECTED.

3 Check for an error (or event) after each function.

errStatus = hpotdr_cmd(instrumentHandle,
"MEAS:FREQ");

check(instrumentHandle, errStatus);
After the function executessrStatus contains the
completion code.
The completion code and instrument ID are passed to an error
checking routine. In the above statement, the routine is called
‘check’.

4 Create a routine to respond to the error or event.

A.9 Introduction to Programming

Selecting Functions

The functions in each category are identified below.

Application Functions

These functions do application level tasks. They are designed to
allow quick and easy access to common instrument measurement
sequences.

Application functions are instrument-specific, and can be used for
common instrument measurement tasks.

173

The VEE Driver
Introduction to Programming

Subsystem Functions

These functions combine multiple SCPI commands into a single,
functional operation. They are designed to allow quick and easy
access to common instrument command sequences.

Subsystem functions are instrument-specific, and cab be used for
functional tasks.

Passthrough Functions

Passthrough functions pass SCPI commands directly to the
instrument. These functions are used when there is not a driver
function available to set or perform a particular operation.

Utility Functions
Utility functions perform a variety of standard tasks.

Example Programs

See the Online Help and Chapter 6 “Programming Examples”.

LabView

The 32-bit HP OTDR driver can be used with LabVIEW 4.0 and
above. LabVIEW 4.0 is a 32-bit version of LabVIEW which runs
on Windows 95 and Windows NT.

To access the functions of the HP OTDR instrument driver from
within LabVIEW 4.0, select iEe from the main menu, then select
the GONVERT CVI FP ALE submenu item.

In the file selection dialog box which appears, séipotdr.fp
and click on thedKbutton.

LabVIEW will create a series of VI's, one per driver function. It
will create a file calledhpotdr.llb which contains these VI's.
This library of VI's can then be accessed like any other VI library in
LabVIEW.

174

The VEE Driver
VISA-specific information

NOTE You must use the 32-bit version of the HP OTDR driver with LabVIEW
4.0.
NOTE LabView is a trademark of National Instruments Corporation
LabWindows

The 32-bit HP OTDR driver can be used with LabWindows 4.0 and
above. LabWindows 4.0 is a 32-bit version of LabWindows which
runs on Windows 95 and Windows NT.

To access the functions of the HP OTDR driver from within
LabWindows, selectNSTRUMENT from the main menu, and then
select the LOAD... submenu item.

In the file selection dialog box which appears, sdipotdr.fp
and click on the©Kbutton. LabWindows loads the function panel
and instrument driver.

The driver now appears as a selection on the Instrument menu, and
can be treated like any LabWindows driver.

NOTE LabWindows is a trademark of National Instruments Corporation

A.10 VISA-specific information

The following information is useful if you are using the driver with
a version of VISA.

Instrument Addresses

When you are using HP VRlug&play instrument drivers, you
should enter the instrument addresses using only upper case letters.
This is to ensure maximum portability.

175

The VEE Driver

Using the HP OTDR VEE Driver in Application Development
Environments

For example, us&PIB0::22 rather thargpib0::22

Callbacks

Callbacks are not supported by this driver.

A.11 Using the HP OTDR VEE Driver in
Application Development Environments

The sections contains suggestions as to how you can use
hpotdr_32.dll within various application development
environments.

Microsoft Visual C++ 4.0 (or higher) and Borland
C++ 4.5 (or higher)

Please refer to your Microsoft Visual C++ or Borland C++ manuals
for information on linking and calling DLLS.

The driver uses Pascal calling conventions.

You should rebuild the driver DLL in a different directory to the
directory in which the driver was installed. This helps you to
differentiate the changes.

Microsoft Visual Basic 4.0 (or higher)

Please refer to your Microsoft Visual Basic manual for information
on calling DLLs.

The BASIC include file ifipotdr.bas . You can find this file in
the directory~vxipnp\win95\include , Where~ is the
directory in the VXIPNP variable.

By default,~ is equivalent t&C:\ . This means that the file is in
C:\wvxipnp\win95\include

176

The VEE Driver

Using the HP OTDR VEE Driver in Application Development
Environments

You may also need to include the fiisa.bas .visa.bas s
provided with your VISA DLL.

HP VEE 3.2 (or higher)

Your copy of HP VEE for Windows contains a document titled
Using VXlplug&play drivers with HP VEE for Windowi&his
document contains the detailed information you need for HP VEE
applications.

LabWindows CVI/ (R) 4.0 (or higher)

The HP OTDR VEE driver is supplied as both a source code file,
and as a Dynamic Link Library (.DLL) file.

There are several advantages to using the .DLL form of the driver,
including those listed below:

 transportability across different computer platforms,

« a higher level of support for the compiled driver from Hewlett-
Packard,

» afaster load time for your project.

LabWindows/CVI (R) will attempt by default to load the source
version of the instrument driver. To load the DLL, you must include
the fileHPOTDR.FPin your project HPOTDR.FPcan be found in
the directoryvxipnp\win95\hpotdr

Do not includeHPOTDR.Cin your project.

You must provide an include file ftiPOTDR.H You do this by
ensuring that the directorwxipnp\win95\include is added
to the include paths (CVI Project Option menu).

~ is the directory in the VXIPNP variable. By defattis
equivalent taC:\ . This means that the file is in
C:\wxipnp\win95\include

177

The VEE Driver
Online information

A.12 Online information

The latest copy of this driver and other HP giig&play drivers
can be obtained via anonymous ftp from
fcext3.external.hp.com from the directory
~dist/mxd/vxipnp/pnpdriver.lis

It may also be obtained on the World Wide Web from

ftp://fcext3.external.hp.com/dist/mxd/

vxipnp/pnpdriver.lis
The HP OTDR driver is located in a self-extracting archive file
calledOTDR.EXE

If you do not have ftp or web access, please contact your HP
supplier, or use the version ©fTDR.EXEon your installation CD.

178

A

Abort

measurement......79

printing «....eeeeeee. 130
Add landmark......... 112
Around marker........ 127
Attenuation............. 86
Automatic measurement

mode.............. 92
Average

number of average90
Average mode........ 91

Averaging time........ 89

B
Battery
CUITENt cvvvvrivnennas 58
POWET +.vvervnnennn. 57
power capacity....57
Baud rate................ 62
Bellcore file
download........... 157
upload 156

Bellcore revision number
143

Binary block 18,
153

Blocks transfer........ 153

Brightness.............. 123

C

Cable configuration.147

CALCulate subsysterB3

Clear

event registers....45

Index

Close
all traces.......v.n.. 117
TrACE vvnerrrrinrnrenns 117
COlOr v, 125

Command messaged 7
Command syntax....17
Commands............. 152
comment......c.uve... 126
Common commands20
Common status registe?2
Condition register....56, 59

Continue mode........ 91
Continuous measureme80
Contrast...........eeunes 123,
124
Copy
file vrrerrireeneenss 138
CUurrentoeeeveenenne. 58
Current trace........... 117,
118
CW mode............... 91
D
Data bitS................. 63
Data points............. 118,
119
Data transfer........... 159
Data types.............. 18
(D) (= 69
Defaults 47
Delete
all traces............ 117
i1 138
landmark 113
TrACE vvnenerrnrnrenns 117
DEVICE ivvvvreninienennen 158
change.............. 141
formatueeenseen. 139

QUETY vevvreeneennen, 141
Directory

change.............. 137

contents............. 137

createeevunenn.. 140

QUETY cevvneeneennen, 138
Display

brightness.......... 123

CONrast ...cvvenense. 123,

24
LCD werrevevrinans 124

Display Operations..123
DISPlay Subsystem.123

Dotted line.............. 125,
126

Download file 142,
157

Dynamic optimizatiorB2,

E
Empty traces........... 118
End Threshold........ 85
Error queue............. 19,70
Event register
clear....c.covvuennns 45
operation 56

operation enable..56, 57
questionable....... 59
questionable enab®9,
60
Event Status Enable46
Event Status Registat/

Event Table............ 115
10CK eneeinieninnns 115
Print cevvneereennnnn. 133,

34

179

F

Factory default....... 47
Fiber

BYPE wrrrerirennas 95
Fiber Break Locator 93
File

COPY vevnrrrnnennnnns 138
delete ..uvvuennennn. 138
download.......... 142
upload 140
File operations....... 137
Flash disk.............. 141
format.............. 139
FloppY «vvvevvveeennnen. 141
format.............. 139
Format
devicevuvurenen. 139
Free space............ 139
reclaim............. 139
Frequency............. 96
Front connector Return Loss
112
Full trace............... 127
G
GP/IB address....... 61, 62
Grid
PNt vevveeeneennen, 135
H
Hard disk 141
HCOPy subsystem. 130
Help page.............. 70

Horizontal offset..... 101

Index

Identification.......... 48

IEEE-Common Commands
45

Initialize 154

Input frequency...... 96

Input queue............ 19

Installed options..... 50

Instrument Behaviour Set-

tiNgS vevvvvennnens 61
Instrument Configuration

148

example 149
Instrument setting
[[oF:Vs I 73
read ..oovvevninnnnn. 73
SAVE +rivnernininnss 53
SBt tiieieiieaen, 73
Interface
behaviour settingsb1
K
Keyboard 81
Keystroke

return last keystroke’ 2
simulate keystroke/ 1

L

Landmark

add ..einiienenen, 112

delete .ovvvnennnnnns 113
Laser

StAte v veiennanns 104

switch on 104
LCD i 124

Learncoveuveneeneenns 48
Length unit............ 106
Line

StOr€ eenevenenrennnn 114

Linearity optimization92,

93

Linestyle 125,
126
Load file ..ccvvuvenenns 140
Lock
event table........ 115
LOSS vuvuirenenenannenas 86

M
M2kHz mode.......... 91
Marker
activate 103
disable.............. 103
POSItion 102
State cevereenanennnn 103
Measurement......... 155
Start ceveevenenrennn. 80
StOP +vverinennns 79

Measurement Functior@9
Measurement mode 91
automatic.......... 92
Message exchange 18
MMEMory subsystenil 37
Modulation frequency
internal source ... 100
visual fault finder 100,
101
Module
fiber type 95
Multimode fiber...... 95

180

Index

N

Non-Reflective Threshol85
Number of averages90

O

Operating time........ 58

Operation Complete49

Operation condition register
56

Operation enable.....56, 57

Operation event regist&6

Optimization mode..92, 93

OptioNS ...cevvevvnneennn. 50
OTDR

initializevvvven.s 154
OTDR mode........... 93
OTDR screen.......... 93
Output queue.......... 19

P

Pace......coeviinennnn, 65, 66
Paper size.............. 136
Parameter window

o111 S 132,

133

Parity checking....... 67, 68
Parity type.....coeevunes 66, 67
PC

connect with OTDRL47
PCMCIA ..cocvviviinns 141

format ...eeeeerenss. 139
POWEr ...vieieiiiennns 57

Capacity.......eu.... 57

CUITENt vevvvrenennen. 58
Power Meter........... 158

continuous measurement

start measuremen80
Power meter

absolute display...97

continuous measurement

current value....... 79, 82

input frequency....96

reference value...96, 97

relative display....97

UNIS vevvneerneennaen, 96, 98
wavelength......... 98, 99
Print ...ooeveeeeiieeennn. 156
abort ...vveevinnnen, 130
AEVICE vevrrreninrenes 130,
131
event table......... 133,
134
111 PP 135
paper size.......... 136
parameter windowl32,
133
printall 132
print all selected..131
tACE venenrrernrenns 134,
135
Print operations....... 130
Printerooovvevnennee. 130,
131
PROGram subsystei®3
Pulsewidth.............. 104,
105
lower limit 105
upper limit 105
Q
QUENIES ..ccvvevnernnenn. 153

Questionable enableb9, 60

Questionable event register
59

R

Realtime mode........ 91
Recall saved setting®1
Reclaim free space..139
Reflectance............. 87, 88
Reflection Height.....88
Reflection parameteB88

Reflective Threshold85
Refractive index...... 94
ReSEet...c.uvvnveniinnennen 52
Reset default.......... 47

Resolution optimizatio®2,
93
Return Loss
front connector....112
17017 TR 116
Return Loss mode...91
Root layer commandg9

RS232 eeiveeeeeenn 68,
147
RS485ccvvvvvennnn 68
S
Sample distance......94
SAVE..iviieeeieiieeien, 53,
156
Setting .uvevevnenne. 142
trACE vvuerrrinrnnenas 142
Saved settings........ 51
Scale
X-SCAlE .urrnirraninns 128
y-SCale ..vieniinnnns 129
Scan Trace............ 84,

181

Index

156

Scatter coefficient.. 95
SCPI revision.........
Self-test .uvvvivninnenn. 54
SENSe subsystem. 89
Serial 2

configuration 68

send command... 64

send query........ 64

send/receive data61
Serial interface

baud rate.......... 62

data bits 63

PACE «eevrirnrnnnn, 65, 66

parity checking... 67, 68

parity type......... 66, 67

stop bits 68, 69
Setting

SAVE iveeriiennns 142
Settings file

[0 FTe I 140

Signal generation... 100
Single-mode fiber... 95

Solid line............... 125,
126

Source Mode.......... 93,
158

SOURCce subsystem100

SpaN....cvvveiieenn, 106,
107

33, s 34
Splice 10SS............. 87
Start covevveeeneiniennen. 107

[104

power meter measurement
80
Status Byte............ 54
Status Command Summary

27
Status Information.. 22
Status Registers..... 22
Status Reporting.... 56
STATus subsystem 56

Stop
JASEN vuevereneeennn. 104
measurement..... 79

Stop bitS......veeunnnes 68, 69

Subsystem
CALCulate......... 83
DISPlay 123
HCOPY 130
MMEMory 137
PROGram......... 83
SENSE.....vevneen. 89
SOURCE........... 100
STATUS ..uvvvene. 56
SYSTem 61
TRACE cuvvrennnnen 110

SYSTem subsystem61
T

Terminal program... 150
Terminate

current task........ 85
B =TS 54
Text

ENteruvivninrinnenn. 81
Threshold.............. 85
TIME e 74

since power on...
Total Optical Return Loss
116

Trace
cloSe vevvirinininns 117
closeall............ 117
COlOr wevveniniananns 125

comment 126
current trace...... 117,
118
data array.......... 111
data points......... 118,
empty traces...... 118
linestyle 125,
load file 140
loaded.............. 110
NAME cevvevrenneenas 142
PrNt vevvevvneenneen, 134,
135, ... 156
rename............. 141
L\ T 142,
156
Trace array............ 18

Trace Checker....... 84
lIMItS evvneeneennes 83, 84

Trace Checker Tablél11
current state....... 112

Trace Data Access. 75,

110
TRACe subsystem. 110
Traffic detection..... 82

Transfer
DIOCKS vvvvnenenen. 153
U
UNitS wovvvveeinieneneen. 17,
106
Upload file 140,
156
Uptime.......cceveuneee. 74

182

Index
V

Visual Fault Finder
modulation frequency

100, ...101
w
Walit vevvnvieeiieeeniennn, 55
Wavelength............ 108
available............ 109
power meter....... 98, 99
X
X-SCAle ..uviiirieeeennn, 128
Y
y-SCale ...eeviininnnnn, 129
Z

Zoom
around marker.....127

183

	Notices
	Subject Matter
	Printing History
	Warranty
	Limitation of Warranty
	Exclusive Remedies
	Assistance
	Certification
	ISO 9001 Certification
	In this Manual
	The Structure of this Manual
	Conventions used in this Manual
	Related Manuals
	NOTE Please note that these User Guides no longer contain programming information, and must now b...
	1 Introduction to Programming
	2 Specific Commands
	3 Instrument Setup and Status
	4 Operations on Traces and Measurements
	5 Mass Storage, Display, and Print Functions
	6 Programming Examples
	A The VEE Driver

	Introduction to Programming
	1.1 Command Messages
	Units
	Trace Array
	Data
	Message Exchange
	The Input Queue
	Clearing the Input Queue

	The Output Queue
	The Error Queue

	1.2 Common Commands
	Common Command Summary
	Table 1-1 Common Command Summary

	NOTE These commands are described in more detail in “IEEE-Common Commands” on page�45
	Common Status Information

	Figure 1-1 Common Status Registers

	1.3 HP OTDR Status Model
	Annotations
	Standard Event Status Register
	Operation/Questionable Status
	Operation Status
	Questionable Status
	Status Command Summary
	Mini-OTDR and Rack OTDR Bit Table
	Bit 19
	Module State
	Bits 18 .. 16
	Unused
	Bits 15�..�8
	Submodule Error
	Bits 7�..�0
	Module Error
	<----------------- Error code ----------------->
	<----------------- Error code ----------------->
	Mainframe OTDR Bit Table

	Selftest ERROR
	Module Init failed
	IBI-test failed
	FATAL ST-Error
	ST non- fatal Error
	analog summ
	digital summ
	MOD Temp.
	LAS Temp.
	APD-L Temp.
	APD-H Temp.
	APD- HV
	RCV- OFFS
	OFFS HILIN
	OFFS Higain
	OFFS Logain
	RMS HILIN
	RMS Higain
	RMS Logain
	not used
	DAP- ALU
	DSP- Code
	CAL- Data
	LOG- Table
	SHOT- RAM
	DAP- RAM
	DSP- RAM
	Other Commands

	Specific Commands
	2.1 Specific Command Summary
	NOTE If a command and a query are both available, the command ends /?.
	So, disp:brig/? means that disp:brig and disp:brig? are both available.
	79
	86
	87
	87
	88
	123
	123
	124
	125
	125
	126
	127
	128
	129
	79
	130
	130
	131
	132
	132
	132
	133
	133
	134
	133
	135
	136
	80
	80
	80
	81
	137
	138
	138
	139
	139
	139
	140
	141
	141
	138
	140
	140
	140
	142
	142
	142
	142
	83
	84
	85
	85
	82
	89
	90
	91
	92
	92
	93
	94
	94
	95
	95
	96
	96
	98
	98
	97
	97
	101
	108
	100
	102
	103
	104
	104
	104
	105
	105
	106
	106
	107
	109
	58
	56
	56
	56
	57
	57
	58
	58
	59
	59
	59
	61
	69
	70
	70
	71
	73
	73
	74
	74
	75
	61
	64
	68
	68
	62
	63
	65
	66
	67
	110
	111
	117
	117
	117
	118
	118
	119
	112
	114
	115
	115
	116
	116
	111
	112
	112
	113
	82
	Table 2-1 Specific Command Summary, continued

	Instrument Setup and Status
	3.1 IEEE-Common Commands
	*CLS
	*ESE
	*ESE?
	*ESR?
	*FTY
	*IDN?
	NOTE The response from *IDN? for Rack OTDRs and Mainframe OTDRs is respectively:
	HP E60xxA Rack Optical Time Domain Reflectometer...
	and

	HP 8147 Optical Time Domain Reflectometer...
	*LRN?
	*OPC?
	*OPT?
	NOTE The second and third arguments for the Rack OTDR (FLOPPY and COLOR) are included for the sak...
	The Rack OTDR has no floppy option, and is always configured as a color unit.
	NOTE In this release of the Mini-OTDR and Rack OTDR, the fourth argument (EXTFLASH) will always b...
	E4310A example:
	*RCL
	*RST
	*SAV
	*STB?
	*TST?
	*WAI

	3.2 Status Reporting – The STATus Subsystem
	STATus:OPERation[:EVENt]?
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle
	STATus:OPERation:ENABle?
	STATus:POWer:ACDC?
	STATus:POWer:CAPacity?
	STATus:POWer:CURRent?
	NOTE If the battery is discharging, the returned value will be negative.
	If the battery is charging, the returned value will be positive.
	STATus:POWer:REMain?
	STATus:PRESet
	STATus:QUEStionable[:EVENt]?
	STATus:QUEStionable:CONDition?
	STATus:QUEStionable:ENABle
	STATus:QUEStionable:ENABle?

	3.3 Interface/Instrument Behaviour Settings – The SYSTem Subsystem
	SYSTem:BRIDge
	SYSTem:COMMunicate:GPIB[:SELF]:ADDRess
	SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD
	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD?

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	SYSTem:COMMunicate:SERial[:RECeive]:BITS

	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	SYSTem:COMMunicate:SERial[:RECeive]:BITS?
	SYSTem:COMMunicate:SERial:FEED
	SYSTem:COMMunicate:SERial:FEED?
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	You cannot use this command with a Rack OTDR Option 006 (RS485), as this does not have hardware h...
	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	NOTE XONX is only available with the E4310A OTDR. However, for binary disk transfers HARD is reco...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE?

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	NOTE XONX is only available with the E4310A OTDR.
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity [:TYPE]

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity [:TYPE]?

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity: CHECk

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity :CHECk?

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	SYSTem:COMMunicate:SERial:PORT?
	SYSTem:COMMunicate:SERial[:RECeive]:SBITS

	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	SYSTem:COMMunicate:SERial[:RECeive]:SBITS?
	SYSTem:DATE
	SYSTem:DATE?
	SYSTem:ERRor?
	SYSTem:HELP?
	SYSTem:KEY
	SYSTem:KEY?
	SYSTem:PRESet
	SYSTem:SET
	SYSTem:SET?
	SYSTem:TIME
	SYSTem:TIME?
	SYSTem:UPTime?
	SYSTem:VERSion?

	Operations on Traces and Measurements
	4.1 Root Layer Commands
	ABORt[1/2]
	NOTE You cannot use a Visual Fault Finder with an E4310A OTDR. You can therefore only use abor wi...
	FETCh[:SCAlar]:POWer[:DC]?

	NOTE If the power meter is not running, a measurement is triggered.
	NOTE If the reference state is absolute, units are dBm or W. If the reference state is relative, ...
	INITiate[1|2][:IMMediate][:ALL]

	NOTE You cannot use a Visual Fault Finder with an E4310A OTDR. You can therefore only use init wi...
	INITiate2[:IMMediate]:CONTinuous
	INITiate2[:IMMediate]:CONTinuous?
	KEYBoard

	NOTE keyb allows you to add text from a terminal (for example, when specifying the name of a file...
	1 Attach your OTDR to a terminal. In this context, a terminal is any PC or palmtop running a term...
	You can attach the terminal using an RS232 cable. For details of attaching an RS232 cable to an O...
	2 Enter keyb from your terminal keyboard.
	3 Enter text as required from your terminal keyboard. All text is treated literally until you ent...
	4 To finish entering text, enter <CTRL>Z from your terminal keyboard.
	For example, after [File]<Save As..>New Name, you see a keyboard on the OTDR screen. Instead of u...
	keyb T1.SOR ^Z

	This is the equivalent of entering T1.SOR from the screen keyboard.
	READ[:SCAlar]:POWer[:DC]?
	NOTE The power meter must be running for this command to be effective
	NOTE If the reference state is absolute, units are dBm or W. If the reference state is relative, ...
	TRAFficdet
	TRAFficdet?

	4.2 Playing With Data – The PROGram and CALCulate Subsystems
	PROGram:EXPLicit:CHECk:LIMit
	NOTE For more information about the Trace Checker limits, please consult the E6000A Mini-OTDR Use...
	PROGram:EXPLicit:CHECk:LIMit?

	NOTE For more information about the Trace Checker limits, please consult the E6000A Mini-OTDR Use...
	PROGram:EXPLicit:EXECute

	NOTE Because this command does not accept character data, you must put quotation marks around the...
	PROGram:EXPLicit:NUMBer
	PROGram:EXPLicit:NUMBer?
	PROGram:EXPLicit:STATe
	PROGram:EXPLicit:STATe?
	CALCulate:MATH:EXPRession:NAME?
	CALCulate:MATH:EXPRession:REFLex?

	NOTE The active marker must be at the position of the Event.
	NOTE The type of measurement given (reflectance or reflection height) depends on how you have con...
	CALCulate:MATH:EXPRession:SPLice?

	NOTE The active marker must be at the position of the splice.
	CALCulate:MATH:EXPRession:TYPE
	CALCulate:MATH:EXPRession:TYPE?

	4.3 Measurement Functions – The SENSe Subsystem
	SENSe:AVERage:COUNt
	SENSe:AVERage:COUNt?
	NOTE If your instrument is configured to measure Number of Averages, rather than Averaging Time, ...
	SENSe:AVERage:COUNt:NUMBer

	NOTE You may only enter 0 or an integer between 14 and 22.
	SENSe:AVERage:COUNt:NUMBer?

	NOTE If your instrument is configured to measure Averaging Time, rather than Number of Averages, ...
	SENSe:DETector[:FUNCtion]
	SENSe:DETector[:FUNCtion]?
	SENSe:DETector[:FUNCtion:]AUTO
	SENSe:DETector[:FUNCtion:]AUTO?
	SENSe:DETector[:FUNCtion:]OPTimize
	SENSe:DETector[:FUNCtion:]OPTimize?
	SENSe:DETector:MODE
	SENSe:DETEctor:MODE?
	SENSe:DETector:SAMPle:DISTance?
	SENSe:FIBer:REFRindex
	SENSe:FIBer:REFRindex?
	SENSe:FIBer:SCATtercoeff
	SENSe:FIBer:SCATtercoeff?
	SENSe:FIBer:TYPE?
	SENSe:POWer:FREQuency?
	SENSe:POWer:REFerence
	SENSe:POWer:REFerence?

	NOTE If the reference state is relative, units are dBm or W. If the reference state is absolute, ...
	SENSe:POWer:REFerence:DISPlay
	SENSe:POWer:REFerence:STATe
	SENSe:POWer:REFerence:STATe?
	SENSe:POWer:UNIT
	SENSe:POWer:UNIT?
	SENSE:POWer:WAVelength
	SENSE:POWer:WAVelength?

	4.4 Signal Generation – The SOURce Subsystem
	[SOURce:]AM[:INTernal]:FREQuency[1]
	[SOURce:]AM[:INTernal]:FREQuency[1]?
	[SOURce:]AM[:INTernal]:FREQuency2
	[SOURce:]AM[:INTernal]:FREQuency2?
	[SOURce:]HOFFset
	NOTE A value of 0 clears the horizontal offset.
	[SOURce:]HOFFset?
	[SOURce:]MARKer1|2|3:POINt

	NOTE The Mini-OTDR and Rack OTDR have no Marker C. MARK3 is therefore only valid for the E4310A.
	[SOURce:]MARKer1|2|3:POINt?

	NOTE The Mini-OTDR and Rack OTDR have no Marker C. MARK3 is therefore only valid for the E4310A.
	[SOURce:]MARKer1|2|3 [:STATe]

	NOTE The Mini-OTDR and Rack OTDR have no Marker C. MARK3 is therefore only valid for the E4310A.
	[SOURce:]MARKer1|2|3[:STATe]?

	NOTE The Mini-OTDR and Rack OTDR have no Marker C. MARK3 is therefore only valid for the E4310A.
	[SOURce:]POWer:STATe[1|2]
	[SOURce:]POWer:STATe[1|2]?
	[SOURce:]PULSe:WIDTh
	[SOURce:]PULSe:WIDTh?
	[SOURce:]PULSe:WIDTh:LLIMit?
	[SOURce:]PULSe:WIDTh:ULIMit?
	[SOURce:]RANGe:LUNit
	[SOURce:]RANGe:LUNit?
	[SOURce:]RANGe:SPAN
	[SOURce:]RANGe:SPAN?
	[SOURce:]RANGe:STARt
	[SOURce:]RANGe:STARt?
	[SOURce:]WAVelength[1|2][:CW]

	NOTE wav2 is only included for the sake of consistency. You will never want to set the Visual Lig...
	NOTE You cannot use a submodule with an E4310A OTDR. You can therefore only use wav with an E4310A.
	[SOURce:]WAVelength[1|2][:CW]?

	NOTE You cannot use a submodule with an E4310A OTDR. You can therefore only use wav with an E4310A.
	[SOURce:]WAVelength[1|2][:CW]:AVAilable?

	NOTE You cannot use a submodule with an E4310A OTDR. You can therefore only use wav:ava? with an ...

	4.5 Trace Data Access – The TRACe Subsystem
	TRACe:CATalog?
	TRACe:DATA?
	NOTE TRAC:DATA? returns blocks of unsigned short (16-bit) data in Intel little endian byte orderi...
	Some processor architectures (such as HP PA-Risc or Motorola) use big endian byte order (high byt...
	If your processor uses big endian byte order, you must swap the low and high byte for each 16 bit...
	If you are not sure about the byte ordering technique used by your processor, please consult your...
	TRACe:DATA:CHECk:TABLe?
	TRACe:DATA:CHECk:STATe?
	TRACe:DATA:FCRetloss?
	TRACe:DATA:LANDmark:ADD
	TRACe:DATA:LANDmark:DELete
	TRACe:DATA:LINE?

	NOTE start + (range*width) must be less than the number of data points
	range must be greater than or equal to 4
	width must be greater than 0
	NOTE TRAC:DATA:LINE? returns blocks of unsigned short (16-bit) data in Intel little endian byte o...
	Some processor architectures (such as HP PA-Risc or Motorola) use bug endian byte order (high byt...
	If your processor uses big endian byte order, you must swap the low and high byte for each 16 bit...
	If you are not sure about the byte ordering technique used by your processor, please consult your...
	TRACe:DATA:TABLe?
	TRACe:DATA:TABLe:LOCK
	TRACe:DATA:TABLe:LOCK?
	TRACe:DATA:TORL?
	TRACe:DATA:VALue?

	NOTE The maximum value of <sample point> is determined by trac:poin?
	TRACe:DELete
	TRACe:DELete:ALL
	TRACe:FEED:CONTrol

	NOTE The current trace receives all measurement data and therefore will be overwritten with every...
	TRACe:FEED:CONTrol?
	TRACe:FREE?
	TRACe:POINts
	TRACe:POINts?

	Mass Storage, Display, and Print Functions
	5.1 Display Operations – The DISPlay Subsystem
	DISPlay:BRIGhtness
	DISPlay:BRIGhtness?
	DISPlay:CONTrast
	DISPlay:CONTrast?
	DISPlay:ENABle
	DISPlay:ENABle?
	DISPlay[:WINDow]:GRAPhics:COLor
	DISPlay[:WINDow]:GRAPhics:COLor?
	DISPlay[:WINDow]:GRAPhics:COLor?

	DISPlay[:WINDow]:GRAPhics:LTYPe
	DISPlay[:WINDow]:GRAPhics:LTYPe?
	DISPlay[:WINDow]:TEXT:DATA
	DISPlay[:WINDow]:TEXT:DATA?
	DISPlay[:WINDow]:X:SCALe
	NOTE You must send this command before you perform any zooming operations.
	The DISP ... :PDIV/? commands described below only work in AROund mode.
	DISPlay[:WINDow]:X:SCALe?
	DISPlay[:WINDow]:X[:SCALe]:PDIVision

	NOTE This command only works in AROund mode (see DISP:X:SCAL).
	DISPlay[:WINDow]:X[:SCALe]:PDIVision?

	NOTE This command only works in AROund mode (see DISP:X:SCAL).
	DISPlay[:WINDow]:Y[:SCALe]:PDIVision

	NOTE This command only works in AROund mode (see DISP:X:SCAL).
	DISPlay[:WINDow]:Y[:SCALe]:PDIVision?

	NOTE This command only works in AROund mode (see DISP:X:SCAL).

	5.2 Print Operations – The HCOPy Subsystem
	HCOPy:ABORt
	HCOPy:DESTination
	HCOPy:DESTination?
	HCOPy[:IMMediate]
	HCOPy:ITEM:ALL[:IMMediate]
	HCOPy:ITEM[:WINDow][:IMMediate]
	HCOPy:ITEM[:WINDow]:STATe
	HCOPy:ITEM[:WINDow]:STATe?
	HCOPy:ITEM[:WINDow]:TEXT[:IMMediate]
	HCOPy:ITEM[:WINDow]:TEXT:STATe
	HCOPy:ITEM[:WINDow]:TEXT:STATe?
	HCOPy:ITEM[:WINDow]:TRACe[:IMMediate]
	HCOPy:ITEM[:WINDow]:TRACe:STATe
	HCOPy:ITEM[:WINDow]:TRACe:STATe?
	HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe
	HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe?
	HCOPy:PAGE:SIZE
	HCOPy:PAGE:SIZE?

	5.3 File Operations – The MMEMory Subsystem
	MMEMory:CATalog?
	MMEMory:CDIRectory
	MMEMory:CDIRectory?
	MMEMory:COPY:FILE
	MMEMory:DELete
	MMEMory:FREE
	MMEMory:FREE?
	MMEMory:INITialize
	MMEMory:LOAD:STATe, :LOAD:TRACe
	MMEMory:LOAD:FILE?
	MMEMory:MDIRectory
	MMEMory:MSIS
	MMEMory:MSIS?
	MMEMory:NAME
	MMEMory:NAME?
	MMEMory:SAVE:FILE
	MMEMory:STORe:STATe, :STORe:TRACe
	MMEMory:STORe:TRACe:REVision
	NOTE Bellcore revision 1.1 conforms to standards, but you may need to use Bellcore revision 1.0 f...
	MMEMory:STORe:TRACe:REVision?

	Programming Examples
	6.1 How to Connect your OTDR to a PC
	1 Connect the OTDR serial port to the serial interface of the PC. Use an HP 24542U cable or an eq...
	NOTE For more information about attaching cables, consult the appropriate User’s Guide:
	Mini-OTDR User’s Guide (E6000-91011), OTDR User’s Guide (E4310- 91011). or Rack OTDR User’s Guide...
	2 If you have no available cable, you can configure your own, according to the specifications lis...
	Table 6-1 Cable configuration for connection to a PC

	How to set the Instrument Configuration
	3 If the instrument is not also configured at your PC’s serial interface, set the following confi...

	NOTE This is the default configuration, so you should only need to send these commands if the ins...
	HANDLE InitSerial(int baudrate)
	{
	static HANDLE hSer = CreateFile(
	INTERFACE, // use COM1 / Serial A
	GENERIC_READ | GENERIC_WRITE,
	// open for read & write access
	0, NULL,
	OPEN_EXISTING,
	// well, hopefully ... :-)
	0, NULL);
	if(!hSer)
	{
	return NULL;
	}
	// configure the interface ...
	DCB dcb;
	COMMTIMEOUTS commtimeout;
	GetCommTimeouts(hSer, &commtimeout);
	commtimeout.ReadIntervalTimeout = 3000;
	commtimeout.ReadTotalTimeoutMultiplier = 200;
	commtimeout.WriteTotalTimeoutMultiplier = 200;
	commtimeout.WriteTotalTimeoutConstant = 3000;
	GetCommState(hSer, &dcb);
	dcb.DCBlength = sizeof(dcb);
	dcb.BaudRate = baudrate;
	dcb.ByteSize = 8;
	dcb.Parity = 0;
	dcb.StopBits = 1;
	dcb.fBinary = 1;
	dcb.fParity = 0 ;
	dcb.fOutX = 0;
	dcb.fInX = 0;
	dcb.fDtrControl = DTR_CONTROL_DISABLE;
	dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control
	SetCommState(hSer, &dcb);
	SetCommTimeouts(hSer, &commtimeout);
	ClearCommBreak(hSer);
	PurgeComm(hSer,
	PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
	return hSer;
	}

	Figure 6-1 Instrument configuration - example

	6.2 How to Connect with a Terminal Program
	1 Start a terminal program on the PC, for example terminal.exe (Win 3.11 or Windows�NT), or hyper...
	2 Set the transmission parameters in the terminal program as listed in Table 6-2:
	Table 6-2 Transmission parameters

	3 Send a test command in terminal mode to the OTDR:
	4 You should see a response, telling you the identity of your OTDR.
	5 Close the terminal program on the PC.

	6.3 Using a Program to Connect to the OTDR
	1 Send a new line ("\n")
	2 Send *idn? to check the identity of the OTDR
	3 Check the response to the *idn? query.
	4 If you do not receive an appropriate response, repeat steps 1 to 3 until you receive the correc...

	// write query
	sprintf (txtbuffer, "\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"*IDN?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// read response
	ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
	if(cnt == 0 || strlen(txtbuffer) == 0)
	{
	printf("SCPI query failed, exiting!\n");
	CloseHandle(hSerial);
	return;
	}
	// print result (in txtbuffer)
	printf("Connected to: %s\n", txtbuffer);
	Figure 6-2 Connection check - example
	5 If the response is still incorrect, make the following checks:
	How to check the connection
	6 Send a break
	7 Close the device and reopen it.
	8 Repeat steps 1 to 4.

	6.4 How to Send Commands and Queries
	NOTE For more information about SCPI, please consult Chapter�1 “Introduction to Programming”.
	The SCPI commands specific to OTDRs are listed in Chapter�2 “Specific Commands”, and explained in...
	Commands
	Queries
	sprintf(txtbuffer,"*IDN?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// read response
	ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);

	Figure 6-3 Query - example
	Blocks transfer
	// read the trace data ...
	sprintf(txtbuffer,"TRACE:DATA?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// now comes the data: e.g. #48000.... which means:
	// | 4 digits following to tell the number
	// of bytes
	// |||| 8000 bytes following, containing
	// 4000 trace pts
	cnt=0;
	while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
	ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
	header[1]=0;
	numbytes = atoi(header);
	ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
	header[cnt] = 0;
	numbytes = atoi(header);
	printf("Reading %d points of trace data ...\n", numbytes/2);
	// 1 point = 16 bit unsigned short
	ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
	ReadFile(hSerial, header, 15, &cnt, 0); // read rest: <END>\n

	Figure 6-4 Blocks transfer - example

	6.5 Common Tasks
	How to Initialize the Instrument
	1 Connect to the instrument,
	2 Clear the error queue.
	3 Check the instrument id

	How to Set Up an OTDR Measurement
	4 Set up the measurement parameters.
	5 Select the OTDR screen (Mini-OTDR and Rack OTDR only):

	How to Run a Measurement
	6 Start the measurement
	7 Check whether the measurement is still running

	How to Scan a Trace
	8 Send the command prog:expl:exec "scan"

	How to Process a Trace
	9 Print the Trace
	10 Save the Trace

	How to Upload a Bellcore File from the current trace
	11 Upload the file from the OTDR
	12 Read in the first character
	13 Read in the next character
	14 Read in the next m characters
	15 Read in the next n data bytes, and store them.
	16 Read until the final <END>.
	17 Check that there have been no errors.

	// now comes the data: e.g. #48000.... which means:
	// | 4 digits following to tell the number
	// of bytes
	// |||| 8000 bytes following, containing
	// 4000 trace pts
	cnt=0;
	while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
	ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
	header[1]=0;
	numbytes = atoi(header);
	ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
	header[cnt] = 0;
	numbytes = atoi(header);
	printf("Reading %d points of trace data ...\n", numbytes/2);
	// 1 point = 16 bit unsigned short
	ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
	ReadFile(hSerial, header, 15, &cnt, 0); // read rest: <END>\n
	// write the data to the console ...
	for(unsigned int i=0; i<numbytes/2; i++)
	{
	printf("idx: %d, value: %d\n", i, tracebuf[i]);
	}
	Figure 6-5 Uploading a Bellcore file - example

	6.6 Advanced Topics
	How to Download a Bellcore File
	1 Download a specified file to the OTDR

	How to Use the Power Meter and Source Mode
	1 Select source mode
	2 Reset the reference power
	3 Set the power meter display to absolute power level readout
	4 Select Watts (W) as the readout unit.
	5 Start a measurement on the power meter.
	6 Read the detected wavelength and power.

	How to Store Traces on Other Devices
	1 Select a new storage device.
	2 Check that the device has been changed correctly.
	3 Check that there is enough free disk space.
	4 Reclaim extra disk space, if required (Mini-OTDR and Rack OTDR only).

	NOTE MMEM:FREE replaces internal disk space only (not, for example, for the Flash Disk or Floppy ...

	6.7 SCPI data transfer between PC and OTDR
	NOTE TRAC:DATA? and TRAC:DATA:LINE? returns blocks of unsigned short (16-bit) data in Intel littl...
	Some processor architectures (such as HP PA-Risc or Motorola) use big endian byte order (high byt...
	If your processor uses big endian byte order, you must swap the low and high byte for each 16 bit...
	If you are not sure about the byte ordering technique used by your processor, please consult your...
	/* --
	* Module: demoapp.cpp *
	* Description: application to demonstrate a SCPI data transfer between PC<->OTDR *
	* Copyright: 12/02/1996 Hewlett-Packard GmbH *
	* NOTE: This application is not supported by HP! HP cannot be held *
	* responsible for any problems/damages caused by this program! *
	* *
	* Compile: Compile this program as a 32Bit Console Application under Win95/NT. *
	* We recommend a struct member byte alignment of 2 bytes. *
	* ---*/
	#include <windows.h>
	#include <stdio.h>
	#include <string.h>
	#define INTERFACE "COM1"
	#define MAXNUMBYTES 255
	#define TRLEN 16512
	HANDLE InitSerial(int baudrate)
	{
	static HANDLE hSer = CreateFile(
	INTERFACE, // use COM1 / Serial A
	GENERIC_READ | GENERIC_WRITE, // open for read & write access
	0, NULL,
	OPEN_EXISTING, // well, hopefully ... :-)
	0, NULL);
	if(!hSer)
	{
	return NULL;
	}
	// configure the interface ...
	DCB dcb;
	COMMTIMEOUTS commtimeout;
	GetCommTimeouts(hSer, &commtimeout);
	commtimeout.ReadIntervalTimeout = 3000;
	commtimeout.ReadTotalTimeoutMultiplier = 200;
	commtimeout.WriteTotalTimeoutMultiplier = 200;
	commtimeout.WriteTotalTimeoutConstant = 3000;
	GetCommState(hSer, &dcb);
	dcb.DCBlength = sizeof(dcb);
	dcb.BaudRate = baudrate;
	dcb.ByteSize = 8;
	dcb.Parity = 0;
	dcb.StopBits = 1;
	dcb.fBinary = 1;
	dcb.fParity = 0 ;
	dcb.fOutX = 0;
	dcb.fInX = 0;
	dcb.fDtrControl = DTR_CONTROL_DISABLE;
	dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control
	SetCommState(hSer, &dcb);
	SetCommTimeouts(hSer, &commtimeout);
	ClearCommBreak(hSer);
	PurgeComm(hSer, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
	return hSer;
	}
	void main(int argc, char** argv)
	{
	int baudrate=19200; // default value for baudrate
	HANDLE hSerial=NULL; // windows handle for interface
	char txtbuffer[MAXNUMBYTES+1]; // ascii buffer for commands/ascii queries
	char header[16]; // buffer to read the binary header into
	unsigned short tracebuf[TRLEN]; // binary buffer for trac:data? query
	unsigned long cnt; // number of bytes actually written/read
	unsigned long numbytes; // number of bytes to write/read
	// if argc>1, take argv[1] as the current baudrate
	if(argc>1)
	{
	baudrate = atoi(argv[1]);
	if(baudrate < 1200 || baudrate > 115200) baudrate = 19200;
	}
	// initialize the interface ...
	printf("Setting baudrate to %d!\n", baudrate);
	hSerial = InitSerial(baudrate);
	if(!hSerial)
	{
	printf("Failed to open %s, exiting!\n", INTERFACE);
	return;
	}
	// now start communicating ...
	sprintf(txtbuffer,"*CLS\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"*IDN?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
	if(cnt == 0 || strlen(txtbuffer) == 0)
	{
	printf("SCPI query failed, exiting!\n");
	CloseHandle(hSerial);
	return;
	}
	printf("Connected to: %s\n", txtbuffer);
	// setting measurement parameters ...
	sprintf(txtbuffer,"SOURCE:RANGE:START 0\n"); // measurement start
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"SOURCE:RANGE:SPAN 10km\n"); // measurement span
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"SOURCE:PULSE:WIDTH 100ns\n"); // pulsewidth
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"SOURCE:WAVELENGTH 1310nm\n"); // wavelength
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// start the measurement ...
	printf("Starting measurement ...\n");
	sprintf(txtbuffer,"INIT\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	Sleep(15000); // give it 10s to run + 5s for init ...
	// stop the measurement ...
	printf("Stopping measurement ...\n");
	sprintf(txtbuffer,"ABORT\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	Sleep(1000); // wait a little for things to settle ...
	// read the trace data ...
	sprintf(txtbuffer,"TRACE:DATA?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// now comes the data: e.g. #48000.... which means:
	// | 4 digits following to tell the number of bytes
	// |||| 8000 bytes following, containing 4000 trace pts
	cnt=0;
	while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
	ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
	header[1]=0;
	numbytes = atoi(header);
	ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
	header[cnt] = 0;
	numbytes = atoi(header);
	printf("Reading %d points of trace data ...\n", numbytes/2);
	ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
	ReadFile(hSerial, header, 15, &cnt, 0); // read rest: <END>\n
	// write the data to the console ...
	for(unsigned int i=0; i<numbytes/2; i++)
	{
	printf("idx: %d, value: %d\n", i, tracebuf[i]);
	}
	// close the interface
	CloseHandle(hSerial);
	return;
	}

	The VEE Driver
	A.1 What is HP VEE�?
	NOTE This appendix assumes that you are using Windows�95. If you are using Windows�NT, please rep...
	Windows�95 and Windows NT are registered trademarks of Microsoft corporation.
	Using the RS232 port
	1 Select Instrument Manager from the IO menu.
	2 Double-click on the Add button to bring up the Device Configuration screen.
	3 Enter the following information:
	4 Press Advanced I/O Config, and select the hpotdr plug&play Driver from a drop down list.

	NOTE If you do not see this driver in the list, it has not been installed properly.
	5 If you are planning to use the COMx port in the machine, specify the address of the instrument ...
	6 Select whether Reset and Instrument Name Check should be performed whenever VEE opens the instr...
	7 Return to the Instrument Manager screen, and select OK to save the configuration.

	A.2 How to Install HP VEE
	1 Press Yes to continue.
	Figure A-1 VXIplug&play window
	2 Ignore this message, and press Yes to continue.
	NOTE If HP VEE is already installed on your system, you see a message asking you if you want to u...
	Press Yes, if required, then wait until you see a message telling you that the uninstall has been...
	3 Close these programs and press Next> to continue.

	NOTE If you do not have VISA installed, you see a message advising you to install VISA.
	Press Cancel to temporarily exit this installation procedure; install VISA on your PC, then run O...
	4 Select any or all of Read Me, Help and Uninstall, then press Next> to continue.

	Figure A-2 HP VEE - Install options
	5 Select the default, VXIPNP, or choose a folder that you want. Press Next> to continue.
	6 Press Finish to complete installation, viewing the Readme file if you wish.

	A.3 Features of the HP OTDR VEE Driver
	A.4 Directory Structure
	A.5 Opening an Instrument Session
	A.6 Closing an Instrument Session
	A.7 VISA Data Types and Selected Constant Definitions
	NOTE You can find a partial list of the type definitions and constant definitions for the visatyp...

	A.8 Error Handling
	1 Declare a variable to contain the function completion code.
	2 Enable automatic instrument error checking following each function call.
	3 Check for an error (or event) after each function.
	4 Create a routine to respond to the error or event.

	A.9 Introduction to Programming
	Selecting Functions
	Application Functions
	Subsystem Functions
	Passthrough Functions
	Utility Functions

	Example Programs
	LabView
	NOTE You must use the 32-bit version of the HP OTDR driver with LabVIEW 4.0.
	NOTE LabView is a trademark of National Instruments Corporation
	LabWindows

	NOTE LabWindows is a trademark of National Instruments Corporation

	A.10 VISA-specific information
	Instrument Addresses
	Callbacks

	A.11 Using the HP OTDR VEE Driver in Application Development Environments
	Microsoft Visual C++ 4.0 (or higher) and Borland C++ 4.5 (or higher)
	Microsoft Visual Basic 4.0 (or higher)
	HP VEE 3.2 (or higher)
	LabWindows CVI/ (R) 4.0 (or higher)

	A.12 Online information
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

