
HP E4310A, E6000A,
E6053A, E6058A, E6060A:
OTDRs

Programming Guide



Hewlett-Packard GmbH
Herrenberger Str. 130
71034 Böblingen
Federal Republic of Germany

Notices
This document contains proprie-
tary information that is protected
by copyright. All rights are
reserved.

No part of this document may be
photocopied, reproduced, or
translated to another language
without the prior written consent
of Hewlett-Packard GmbH.

 Copyright 1998, 1999 by:
Hewlett-Packard GmbH
Herrenberger Str. 130
71034 Böblingen
Germany

Subject Matter

The information in this docu-
ment is subject to change with-
out notice.

Hewlett-Packard makes no war-
ranty of any kind with regard to
this printed material, including,
but not limited to, the implied
warranties of merchantability
and fitness for a particular pur-
pose.

Hewlett-Packard shall not be lia-
ble for errors contained herein or
for incidental or consequential
damages in connection with the
furnishing, performance, or use
of this material.

Printing History

New editions are complete revi-
sions of the guide reflecting
alterations in the functionality of
the instrument. Updates are
occasionally made to the guide
between editions. The date on
the title page changes when an
updated guide is published. To
find out the current revision of
the guide, or to purchase an
updated guide, contact your
Hewlett-Packard representative.

Control Serial Number: First
Edition applies directly to all
instruments.

Warranty

This Hewlett-Packard instrument
product is warranted against
defects in material and work-
manship for a period of one year
from date of shipment. During
the warranty period, HP will, at
its option, either repair or replace
products that prove to be defec-
tive.

For warranty service or repair,
this product must be returned to
a service facility designated by
HP. Buyer shall prepay shipping
charges to HP and HP shall pay
shipping charges to return the
product to Buyer. However,
Buyer shall pay all shipping
charges, duties, and taxes for
products returned to HP from
another country.

HP warrants that its software and
firmware designated by HP for
use with an instrument will exe-
cute its programming instruc-
tions when properly installed on
that instrument. HP does not
warrant that the operation of the
instrument, software, or
firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not
apply to defects resulting from
improper or inadequate mainte-
nance by Buyer, Buyer-supplied
software or interfacing, unau-
thorized modification or misuse,
operation outside of the environ-
mental specifications for the
product, or improper site prepa-
ration or maintenance.

No other warranty is expressed
or implied. Hewlett-Packard spe-
cifically disclaims the implied
warranties of Merchantability
and Fitness for a Particular Pur-
pose.

Exclusive Remedies

The remedies provided herein
are Buyer’s sole and exclusive
remedies. Hewlett-Packard shall

not be liable for any direct, indi-
rect, special, incidental, or con-
sequential damages whether
based on contract, tort, or any
other legal theory.

Assistance

Product maintenance agreements
and other customer assistance
agreements are available for
Hewlett-Packard products. For
any assistance contact your near-
est Hewlett-Packard Sales and
Service Office.

Certification

Hewlett-Packard Company certi-
fies that this product met its pub-
lished specifications at the time
of shipment from the factory.

Hewlett-Packard further certifies
that its calibration measurements
are traceable to the United States
National Institute of Standards
and Technology, NIST (for-
merly the United States National
Bureau of Standards, NBS) to
the extent allowed by the Insti-
tutes’s calibration facility, and to
the calibration facilities of other
International Standards Organi-
zation members.

ISO 9001 Certification

Produced to ISO 9001 interna-
tional quality system standard as
part of our objective of continu-
ally increasing customer satis-
faction through improved
process control.

Second Edition

E1098 October 1998
E0599 May 1999

E4310-91016

First Edition: E0298, February
1998



HP E4310A, E6000A, E6053A, E6058A, E6060A:
OTDRs

Programming Guide



Front Matter

er.

re
t

nt
e

PI

e

In this Manual

This manual contains information about SCPI commands which
can be used to program all HP Optical Time Domain Reflectomet
Instruments affected are:

 • HP E4310A (8147A) OTDR

 • HP E6000A Mini-OTDR

 • HP E6053A, E6058A and E6060A Rack OTDRs.

Most SCPI commands can be used with all OTDRs, but a few a
only applicable to particular instruments, or have slightly differen
names. For example, commands which may also be used with
different Mini-OTDR submodules have an extra number in their
name, indicating which submodule is affected.

Each command definition contains text showing which instrume
is affected. A command which affects “All” can be used with all th
instruments listed above.

The Structure of this Manual

This manual is divided into 4 parts:

 • Chapter 1 gives a general introduction to SCPI programming
with OTDRs.

 • Chapter 2 lists the OTDR-specific SCPI commands.

 • Chapters 3 to 5 give fuller explanations and examples of the
OTDR-specific commands.

 • Chapter 6 gives some example programs showing how the SC
commands can be used with OTDRs.

In addition, there is an appendix containing information about th
HP VEE driver.
4



Front Matter

T
y

t be

is
Conventions used in this Manual

 • All commands and typed text is written in Courier font, for
exampleINIT[:IMM][:ALL].

 • SCPI commands are written in mixed case: text that you MUS
print is written in capitals; text which is helpful but nor necessar
is written in lower case.

So, the commandINITiate[:IMMediate][:ALL]  can
be entered either asinit[:imm][:all] , or as
initiate[:immediate][:all] . It does not matter
whether you enter text using capitals or lower-case letters.

 • SCPI commands often contain extra arguments in square
brackets. These arguments may be helpful, but they need no
entered.

So, the commandINITiate[:IMMediate][:ALL]  can
be entered asinit  or initiate .

 • A SCPI command which can be either a command or a query
appended with the text/? .

So,SYSTem:SET/?  refers to both the command
SYSTem:SET and the querySYSTem:SET?.
5



Front Matter

s.

e
le

y,
Related Manuals

You can find more information about the instruments covered by
this manual in the following manuals:

 • HP 8147A Optical Time Domain Reflectometer User’s Guide
(HP Product Number E4310-91011).

 • HP E6000A Mini-OTDR User’s Guide (HP Product Number
E6000-91011)

 • HP E6053A, E6058A and E6060A Rack OTDR User’s Guide
(HP Product Number E6050-91011).

NOTE Please note that these User Guides no longer contain programming
information, and must now be used in conjunction with this manual.

If you are not familiar with the HP-IB, then refer to the following
books:

 • HP publication 5952-0156,Tutorial Description of HP-IB.

 • ANSI/IEEE-488.1-1978,IEEE Standard Digital Interface for
Programmable Instrumentation, and ANSI/IEEE-488.2-1987,
IEEE Standard Codes, Formats, and Common Commands,
published by the Institute of Electrical and Electronic Engineer

In addition, the commands not from the IEEE 488.2 standard ar
defined according to the Standard Commands for Programmab
Instruments (SCPI). For an introduction to SCPI and SCPI
programming techniques, refer to the following documents:

 • Hewlett-Packard Press (Addison-Wesley Publishing Compan
Inc.): A Beginners Guide to SCPI by Barry Eppler.

 • The SCPI Consortium:Standard Commands for Programmable
Instruments, published periodically by various publishers. To
obtain a copy of this manual, contact your Hewlett-Packard
representative.
6



Table of Contents
In this Manual ..................................................................... 4

The Structure of this Manual .............................................. 4

Conventions used in this Manual ........................................ 5

Related Manuals ................................................................. 6

1 Introduction to Programming

1.1 Command Messages ................................................17

Units .................................................................................... 17

Trace Array ......................................................................... 18

Data ..................................................................................... 18

Message Exchange ............................................................. 18

The Input Queue ................................................................. 19

The Output Queue .............................................................. 19

The Error Queue ................................................................. 19

1.2 Common Commands ..............................................20

Common Command Summary ........................................... 21

Common Status Information .............................................. 22

1.3 HP OTDR Status Model .........................................23

Annotations ......................................................................... 25

Standard Event Status Register ........................................... 25

Operation/Questionable Status ........................................... 26

Operation Status ................................................................. 26

Questionable Status ............................................................ 26

Status Command Summary ................................................ 27

Mini-OTDR and Rack OTDR Bit Table ............................ 28

Mainframe OTDR Bit Table ............................................... 28

Other Commands ................................................................ 29
7



Table of Contents
2 Specific Commands

2.1 Specific Command Summary ............................... 33

3 Instrument Setup and Status

3.1 IEEE-Common Commands .................................. 45

3.2 Status Reporting – The STATus Subsystem ....... 56

3.3 Interface/Instrument Behaviour Settings – The SYS-
Tem Subsystem ............................................................. 61

4 Operations on Traces and Measurements

4.1 Root Layer Commands .......................................... 79

4.2PlayingWithData–ThePROGramandCALCulateSubsystems
83

4.3 Measurement Functions – The SENSe Subsystem 89

4.4 Signal Generation – The SOURce Subsystem ..... 100

4.5 Trace Data Access – The TRACe Subsystem ...... 110

5 Mass Storage, Display, and Print Functions

5.1 Display Operations – The DISPlay Subsystem ... 123
8



Table of Contents
5.2 Print Operations – The HCOPy Subsystem .........130

5.3 File Operations – The MMEMory Subsystem .....137

6 Programming Examples

6.1 How to Connect your OTDR to a PC ....................147

How to set the Instrument Configuration ........................... 148

6.2 How to Connect with a Terminal Program ..........150

6.3 Using a Program to Connect to the OTDR ...........151

6.4 How to Send Commands and Queries ..................152

Commands .......................................................................... 152

Queries ................................................................................ 153

Blocks transfer .................................................................... 153

6.5 Common Tasks ........................................................154

How to Initialize the Instrument ......................................... 154

How to Set Up an OTDR Measurement ............................. 155

How to Run a Measurement ............................................... 155

How to Scan a Trace ........................................................... 156

How to Process a Trace ...................................................... 156

How to Upload a Bellcore File from the current trace ....... 156

6.6 Advanced Topics .....................................................157

How to Download a Bellcore File ...................................... 157

How to Use the Power Meter and Source Mode ................ 158

How to Store Traces on Other Devices .............................. 158

6.7 SCPI data transfer between PC and OTDR .........159
9



Table of Contents

r)
A The VEE Driver

A.1 What is HP VEE ? ................................................. 165

Using the RS232 port ..........................................................165

A.2 How to Install HP VEE ......................................... 166

A.3 Features of the HP OTDR VEE Driver .............. 169

A.4 Directory Structure ............................................... 170

A.5 Opening an Instrument Session ........................... 170

A.6 Closing an Instrument Session ............................. 171

A.7 VISA Data Types and Selected Constant Definitions
172

A.8 Error Handling ...................................................... 172

A.9 Introduction to Programming .............................. 173

Selecting Functions .............................................................173

Example Programs ..............................................................174

LabView ..............................................................................174

LabWindows .......................................................................175

A.10 VISA-specific information .................................. 175

Instrument Addresses ..........................................................175

Callbacks .............................................................................176

A.11 Using the HP OTDR VEE Driver in Application De-
velopment Environments ............................................. 176

MicrosoftVisualC++4.0(orhigher)andBorlandC++4.5(orhighe
176

Microsoft Visual Basic 4.0 (or higher) ................................176

HP VEE 3.2 (or higher) .......................................................177

LabWindows CVI/ (R) 4.0 (or higher) ................................177

A.12 Online information .............................................. 178
10



List of Figures

22
49
151
153
154
57
7
68
Figure 1-1 Common Status Registers .........................................................................
Figure 6-1 Instrument configuration - example.......................................................... 1
Figure 6-2 Connection check - example .....................................................................
Figure 6-3 Query - example........................................................................................
Figure 6-4 Blocks transfer - example..........................................................................
Figure 6-5 Uploading a Bellcore file - example ......................................................... 1
Figure A-1 VXIplug&play window............................................................................ 16
Figure A-2 HP VEE - Install options.......................................................................... 1
11



List of Figures
12



List of Tables

21
34
47

 150
Table 1-1 Common Command Summary................................................................... 
Table 2-1 Specific Command Summary .................................................................... 
Table 6-1 Cable configuration for connection to a PC ............................................... 1
Table 6-2 Transmission parameters ............................................................................
13



List of Tables
14



1

1 Introduction to
Programming



16

Introduction to
Programming

This chapter introduces some background information that may
help you when programming OTDRs. You can find general
information about SCPI commands here, and lists and descriptions
of some useful IEEE standard common commands.



Introduction to Programming

Command Messages

s:

ons
e

o
ds

 or

lon

its
1.1 Command Messages

A command message is a message from the controller to the
OTDR. The following are a few points about command message

 • Either upper-case or lower-case characters can be used.

 • The parts in upper-case characters in the command descripti
must be given. The parts in lower-case characters can also b
given, but they are optional.

 • The parts in brackets [ ] in the command description can be
given, but they are optional.

 • In the syntax descriptions the characters between angled
brackets (<...>) show the kind of data that you require. You d
not type these brackets in the actual command. “<wsp>” stan
for a white space character.

 • A command message is ended by a line feed character (LF)
<CR><LF>.

 • Several commands can be sent in a single message. Each
command must be separated from the next one by a semico
“;”.

Units

Where units are given with a command, usually only the base un
are specified. The full sets of units are given in the table below.

The default unit of length is usually mm.

Unit Default Allowed Mnemonics
meters M NM, UM, MM, M, KM

miles MI MIles

feet FT FT, KFT

decibel DB MDB, DB

second S NS, US, MS, S
17



Introduction to Programming

Command Messages

is

ive

n

7.
s

g

r a
t is

,
, a
Trace Array

The Mini-OTDR and Rack OTDR can load up to two traces into
their memory. The Mainframe OTDR can load up to four traces.
These traces form a trace array. One of the entries in this array 
always the current entry. Most operations work on this entry.

Data

With the commands you give parameters to the OTDR and rece
response values from the OTDR. Unless explicitly noticed these
data are given in ASCII format (in fact, only the trace data are give
in binary format). The following types of data are used:

 • Boolean data may only have the values 0 or 1.

 • Data of typeshort may have values between -32768 and 3276
When the OTDR returns a short value, it always explicitly give
the sign.

 • Float variables may be given in decimal or exponential writin
(0.123 or 123E-3).

 • A string is contained between a " at the start and at the end o
' at the start and at the end. When the OTDR returns a string, i
always included in " " and terminated by <END>.

 • When aregister value is given or returned (for example *ESE)
the decimal values for the single bits are added. For example
value of nine means that bit 0 and bit 3 are set.

 • Larger blocks of data are given asBinary Blocks, preceded by
“#HLenNumbytes”, terminated by <END>;HLenrepresents the
length of the Numbytes block. For example:
#16TRACES<END>.

Message Exchange

The OTDR exchanges messages using an input and an output
queue. Error messages are kept in a separate error queue.
18



Introduction to Programming

Command Messages

s

s

ut

t-
.

,
he

.

The Input Queue

The input queue is a FIFO queue (first-in first-out). Incoming byte
are stored in the input queue as follows:

 • Receiving a byte:

• Clears the output queue.

• Clears Bit 7 (MSB).

 • No modification is made inside strings or binary blocks.

Outside strings and binary blocks, the following modification
are made:

• Lower-case characters are converted to upper-case.

• Two or more blanks are truncated to one.

 • The parser is started if the LF character is received or if the inp
queue is full.

Clearing the Input Queue

Switching the power off causes commands that are in the input
queue, but have not been executed to be lost.

The Output Queue

The output queue contains responses to query messages. The
OTDR transmits any data from the output queue immediately.

On the Mainframe OTDR, each response message ends with a
carriage return (CR, 0D16) and a LF (0A16), with EOI=TRUE. If no
query is received, or if the query has an error, the output queue
remains empty.

The Error Queue

The error queue is 30 errors long. It is a FIFO queue (first-in firs
out). That is, the first error read is the first error to have occurred

If more than 29 errors are put into the queue, the message '-350
"Queue overflow" ' is placed as the last message in the queue. T
queue continues to work, but now with only the first 29 positions
19



Introduction to Programming

Common Commands

new

ed

nd
The oldest error message in the queue is discarded each time a
error message added.

1.2 Common Commands

The IEEE 488.2 standard has a list of reserved commands, call
common commands. Some of these commands must be
implemented by any instrument using the standard, others are
optional. The OTDR implements all the necessary commands, a
some optional ones. This section describes the implemented
commands.
20



Introduction to Programming

Common Commands
Common Command Summary

Table 1-1gives a summary of the common commands.

NOTE These commands are described in more detail in “IEEE-Common
Commands” on page 45

Table 1-1 Common Command Summary

Command Parameter Function
*CLS Clear Status Command

*ESE Standard Event Status Enable Command

*ESE? Standard Event Status Enable Query

*ESR? Standard Event Status Register Query

*FTY Reset defaults and reboot

(Rack OTDR and Mini-OTDR only)

*IDN? Identification Query

*LRN? Read instrument settings

*OPC? Operation Complete Query

*OPT? Options Query

*RCL <location> Recall Instrument Setting

*RST Reset Command

*SAV <location> Save Instrument Setting

*STB? Read Status Byte Query

*TST? Self Test Query

*WAI Wait Command
21



Introduction to Programming

Common Commands

re

d.

n

Common Status Information

There are four registers for the status information. Two of these a
status-registers and two are enable-registers. These registers
conform to the IEEE Standard 488.2-1987. You can find further
descriptions of these registers under *ESE, *ESR?, *SRE, and
*STB?. The following figure shows how the registers are organize

* The questionable and operation status command trees are
described in “Status Reporting – The STATus Subsystem” on
page 56.

ATTENTION Unused bits in any of the registers return 0 whe
you read them.

For information about the status model, see “Status Reporting –
The STATus Subsystem” on page 56

Figure 1-1 Common Status Registers
22



Introduction to Programming

HP OTDR Status Model
1.3 HP OTDR Status Model

The following figure describes the relevant bit patterns and their
relationship of the SCPI status/error model
23



Introduction to Programming

HP OTDR Status Model
Bit 7
Operat.
Status

Bit 6
*Master
Summ

Bit 5
ESR

Summ.

Bit 4
MAV

Bit 3
Quest.
Status

Bit 2
*unused

Bit 1
*unused

Bit 0
Laser
Active

Bit 7
Power

On

Bit 6
*User

Request

Bit 5
Cmd
Error

Bit 4
Exec
Error

Bit 3
DevDep

Error

Bit 2
Query
Error

Bit 1
*Req

Control

Bit 0
Operat.
Compl.

0, *unused

1, *unused

2, *unused

3, *unused

4, meas running

5, *unused

6, *unused

7, *unused

8, scan running

9, printing

10, *unused

11, *unused

12, *unused

13, *unused

14, *unused

15, *unused

0, *unused

1, *unused

2, *unused

3, power warn

4, *unused

5, *unused

6, *unused

7, *unused

8, *unused

9, *unused

10, *unused

11, *unused

12, *unused

13, *unused

14, cmd. warn.

15, *unused

EVENt <- CONDition CONDition -> EVENt

Enable
Operation Questionable

Enable

Standard Event
Status Enable

Status
Byte

Standard Event
Status Register

+& &

 Status  Status

+

+

&

24



Introduction to Programming

HP OTDR Status Model

e

its

ice

nce
Bits marked with * are not used and therefore always set to0. The
few used bits in the operation are marked with arrows, as are th
questionable status registers.

Annotations

Status Byte:

 • Bit 0 is set any time the laser is on (measurement running)

 • Bits 1 and Bit 2 are unused (0)

 • Bit 3 is built from the questionable status event register and 
enable mask.

 • Bit 4 (MAV) is generally 0.

 • Bit 5 is built from the SESR and its SESE.

 • Bit 6 is always 0 because the SRE mask is always 0 (no serv
request).

 • Bit 7 is built from the operation status and its enable mask.

Standard Event Status Register

 • Bit 0 is set if an operation complete event has been received si
the last call to*ESR?.

 • Bit 1 is always 0 (no service request).

 • Bit 2 is set if a query error has been detected.

 • Bit 3 is set if a device dependent error has been detected.

 • Bit 4 is set if an execution error has been detected.

 • Bit 5 is set if a command error has been detected.

 • Bit 6 is always 0 (no service request).

 • Bit 7 is set for the first call of*ESR after Power On.
25



Introduction to Programming

HP OTDR Status Model

nd

t

the

can

ly,

for
e

Operation/Questionable Status

 • The Operation/Questionable Status consists of a condition a
an event register.

 • A "rising" bit in the condition register is copied to the event
register.

 • A "falling" bit in the condition register has no effect on the even
register.

 • Reading the condition register is non-destructive.

 • Reading the event register is destructive.

 • A summary of the event register and its enable mask is set in
status byte.

Operation Status

 • Bit 4 is set if a measurement is running, and reset when the
measurement is stopped.

 • Bit 8 is set if the scan trace is running, and reset when the s
trace is stopped.

 • Bit 9 is set if a printout has been started, and reset when the
printout is finished or cancelled.

 • All other bits are unused, and therefore set to 0.

Questionable Status

 • Bit 3 is set if a weak power supply has been detected (DC supp
battery low).

 • Bit 14 is set if a questionable command has been received (
example, starting the scan trace or printout with no valid trac
data).

 • All other bits are unused, and therefore set to 0.
26



Introduction to Programming

HP OTDR Status Model

rror

G.
ed
Status Command Summary

*STB? returns status byte, value 0 .. +255

*ESE sets the standard event status enable register, parameter 0 .. +255

*ESE? returns SESE, value 0 .. +255

*ESR? returns the standard event status register, value 0 .. +255

*OPC? returns 1 if all operations (scan trace printout, measurement) are
completed. Otherwise it returns 0.

*CLS clears the status byte and SESR, and removes any entries from the e
queue.

*RST clears the error queue, loads the default setting, and restarts
communication.
NOTE:  *RST does NOT touch the STB or SESR. A running
measurement is stopped.

*TST? initiates an instrument selftest and returns the results as a 32 bit LON
If a measurement is running, the status of the latest selftest is return
and an error is set. +0 means "passed". The bits of the 32 bit long
integer have the following meaning:
27



Introduction to Programming

HP OTDR Status Model

--->
Mini-OTDR and Rack OTDR Bit Table

Mainframe OTDR Bit Table

<-------- Overall State - "0" means passed, "1" means ST failed or not tested -----

Bit 31

ST-
Error

Bit 30

Main-
frame

State

Bit 29

Video
State

Bit 28

Batt
State

Bit 27

RTC
State

Bit 26

SMC
State

Bit 25

Check
Sum
State

Bit 24

Power
6V

State

Bit 23

Flash
State

Bit 22

Floppy
State

Bit 21

DAP
State

Bit 20

Sub-
Module
State

Bit 19

Module
State

Bits 18 .. 16

Unused

Bits 15 .. 8

Submodule Error

Bits 7 .. 0

Module Error

<----------------- Error code -----------------> <----------------- Error code ----------------->

MSW:

Bit 31
Selftest
ERROR

Bits 30 .. 26

unused

Bit 25
Module

Init
failed

Bit 24
IBI-test
failed

Bit 23
FATAL

ST-Error

Bit 22
ST non-

fatal
Error

Bit 21
analog
summ

Bit 20
digital
summ

Bit 19
MOD
Temp.

Bit 18
LAS

Temp.

Bit 17
APD-L
Temp.

Bit 16
APD-H
Temp.

LSW:

Bit 15
APD-
HV

Bit 14
RCV-
OFFS

Bit 13
OFFS
HILIN

Bit 12
OFFS
Higain

Bit 11
OFFS
Logain

Bit 10
RMS

HILIN

Bit 9
RMS

Higain

Bit 8
RMS

Logain

Bit 7
not used

Bit 6
DAP-
ALU

Bit 5
DSP-
Code

Bit 4
CAL-
Data

Bit 3
LOG-
Table

Bit 2
SHOT-
RAM

Bit 1
DAP-
RAM

Bit 0
DSP-
RAM
28



Introduction to Programming

HP OTDR Status Model

he
e

Other Commands

*RCL recalls a pre-defined setting.
This is the same as “*RCL” on page 21, except that it is read from a
harddisk.

*SAV stores the current setting.
This is the same as “*SAV” on page 21, except that it is stored on a
harddisk.

*OPT? returns a string containing the installed options:
<FLOPPY opt>, <COLOR opt>.
For example, *OPT?→ FLOPPY, 0
An uninstalled option returns 0.

*WAI causes the remote control part of the instrument to wait for at least 2
seconds before continuing to parse commands. This gives the
instrument a chance to accomplish pending tasks.
The instrument returns to receiving commands after 2 seconds, or t
completion of a printout or scan trace or a limited measurement tim
(averaging time > 0).
NOTE:  During a running measurement *WAI does NOT wait for the
scan trace to finish as it runs continuously.

*IDN? is an identification string, like “*LRN?” on page 21.

*FTY resets the defaults and reboot

(Rack OTDR and Mini-OTDR only)
29



Introduction to Programming

HP OTDR Status Model
30



2

2 Specific Commands



32

Specific Commands

This chapter gives information about the HP OTDR remote
commands. It lists all the remote commands relating to OTDRs,
with a single-line description.

Each of these summaries contains a page reference for more
detailed information about the particular command later in this
manual.



Specific Commands

Specific Command Summary

d

em

he
2.1 Specific Command Summary

The commands are ordered in a command tree. Every comman
belongs to a node in this tree.

The root nodes are also called the subsystems. A subsystem
contains all commands belonging to a specific topic. In a subsyst
there may be further subnodes.

All the nodes have to be given with a command. For example in t
command hcop:item:all

 • HCOPy is the subsystem containing all commands for
controlling the print out,

 • ITEM is the subnode that provides selecting what should be
printed,

 • ALL is the command selecting everything for the print out.

NOTE If a command and a query are both available, the command ends/? .

So,disp:brig/?  means thatdisp:brig  and disp:brig?  are
both available.

Table 2-1 gives an overview of the command tree. You see the
nodes, the subnodes, and the included commands.
33



Specific Commands

Specific Command Summary
Command Description Page

ABORt[1/2] Stops a running measurement. 79

CALCulate:MATH:EXPRession

:NAME? Allows calculating loss and attenuation values. 86

:REFLex? Calculates Reflectance. 87

:SPLice? Calculates Splice Loss. 87

:TYPE/? Sets/queries whether Reflection Height or Reflectance is
used.

88

DISPLay

:BRIGhtness/? Changes or queries the current LCD brightness. 123

:CONTrast/? Changes or queries the current LCD contrast. 123

:ENABle/? Enables, disables, or checks the internal LCD. 124

DISPLay[:WINDow]:GRAPhics

:COLor/? Changes or queries the trace color. 125

:LTYPe/? Changes or queries the trace linestyle. 125

DISPLay[:WINDow]:TEXT

:DATA/? Sets or requests a comment. 126

DISPLay[:WINDow]:X

:SCALe/? Changes or queries the zooming mode (full trace or zoom)127

DISPLay[:WINDow]:X[:SCALe]

:PDIVision/? Changes or queries the scaling of the X-axis. 128

DISPLay[:WINDow]:Y[:SCALe]

:PDIVision/? Changes or queries the scaling of the Y-axis. 129

FETCh[:SCALar]

:POWer[:DC]? Reads current power meter value (triggers a measurement).79

Table 2-1 Specific Command Summary
34



Specific Commands

Specific Command Summary
HCOPy

:ABORt Cancels the current print job. 130

:DESTination/? Changes or queries the active printer. 130

[:IMMediate] Immediately starts printing everything selected. 131

HCOPy:ITEM

:ALL[:IMMediate] Start printing everything. 132

HCOPy:ITEM[:WINDow]

[:IMMediate] Immediately starts printing the parameter window. 132

:STATe/? Enables or queries printing the parameter window. 132

HCOPy:ITEM[:WINDow]:TEXT

[:IMMediate] Immediately starts printing the event table. 133

:STATe/? Enables or queries printing the event table. 133

HCOPy:ITEM[:WINDow]:TRACe

[:IMMediate] Immediately starts printing the trace. 134

:STATe/? Enables or queries printing the trace. 133

HCOPy:ITEM[:WINDow]:TRACe:GRATicule

:STATe/? Enables or queries printing the trace window grid. 135

HCOPy:PAGE

:SIZE/? Selects or queries the size of the paper. 136

INITiate[1][:IMMediate]

[:ALL] Starts a measurement. 80

INITiate2 Starts a power meter measurement. 80

:CONTinuous/? Starts or Queries a single/continuous power meter
measurement.

80

KEYBoard Allows the use of a terminal as an external keyboard 81

Command Description Page

Table 2-1 Specific Command Summary, continued
35



Specific Commands

Specific Command Summary
MMEMory

:CATalog? Returns contents of current directory. 137

:CDIRectory/? Changes or queries the current directory. 138

:DELete Deletes a file. 138

:FREE Reclaims free space. 139

:FREE? Returns the amount of free space and the amount used 139

:INITialize Formats the specified storage device 139

:MDIRectory Creates a directory on the current storage device. 140

:MSIS/? Changes or queries the current storage device. 141

:NAME/? Changes or queries the name of the current trace. 141

MMEMory:COPY

:FILE Copies a file to a new name/device 138

MMEMory:LOAD

:FILE? Returns a Bellcore binary file. 140

:STATe Loads a settings file. 140

:TRACe Loads a trace file. 140

MMEMory:SAVE

:FILE Downloads a Bellcore binary file 142

MMEMory:STORe

:STATe Saves a settings file. 142

:TRACe Saves a trace file. 142

:TRACe:REVision/? Sets or requests the Bellcore file revision used. 142

PROGram:EXPLicit

:CHECk:LIMit/? Sets or queries the Trace Checker limits 83

:EXECute Executes a special task. 84

Command Description Page

Table 2-1 Specific Command Summary, continued
36



Specific Commands

Specific Command Summary
:NUMBer/? Sets or requests the threshold in mdB 85

:STATe/? Controls a running task. 85

READ[:SCALar]

:POWer[:DC]? Reads current power meter value (no measurement triggered).82

SENSe:AVERage

:COUNt/? Sets or queries the current averaging time. 89

SENSe:AVERage:COUNt

:NUMBer/? Sets or queries the number of averages for measurements90

SENSe:DETector

[:FUNCtion]/? Sets or queries the current measurement mode. 91

[:FUNCtion:]AUTO/? Enables or checks the auto mode. 92

[:FUNCtion:]OPTimize/? Sets or queries the optimization mode. 92

:MODE/? Sets or returns the current Mini-OTDR mode 93

SENSe:DETector:SAMPle

:DISTance? Returns the current sample distance. 94

SENSe:FIBer

:REFRindex/? Sets or returns the current refractive index. 94

:SCATtercoeff/? Sets or returns the current scatter coefficient. 95

:TYPE? Returns the current fiber type. 95

SENSe:POWer

:FREQuency? Queries the detected power meter input frequency 96

:REFerence/? Sets or Queries the power meter reference value. 96

:UNIT/? Sets or Queries the power meter power units. 98

:WAVelength/? Sets or Queries the power meter wavelength. 98

SENSe:POWer:REFerence

Command Description Page

Table 2-1 Specific Command Summary, continued
37



Specific Commands

Specific Command Summary
:DISPlay Takes current power meter value as reference value. 97

:STATe/? Sets or Queries type of power meter display (relative or
absolute).

97

[SOURce:]

HOFFset/? Sets or returns the horizontal offset 101

WAVelength[1/2][:CW]/? Sets or returns the current wavelength. 108

[SOURce:]AM[:INTERNAL]

:FREQuency[1/2]/? Sets or returns frequency of chosen source. 100

[SOURce:]MARKer1/2/3

:POINt/? Sets or returns the position of the marker. 102

[:STATe]/? Activates, disables, or checks the marker. 103

SOURce:POWer

:STATe[1/2] Switches the laser of the chosen source on or off. 104

:STATE[1/2]? Queries the state of the chosen source. 104

[SOURce:]PULSe

:WIDTh/? Sets or returns the pulsewidth. 104

:WIDTh:LLIMit? Returns the lower limit of the measurement hardware. 105

:WIDTh:ULIMit? Returns the upper limit of the measurement hardware. 105

[SOURce:]RANGe

:LUNit/? Sets or returns the current length unit. 106

:SPAN/? Sets or returns the current measurement span. 106

:STARt/? Sets or returns the current measurement start. 107

[SOURce:]WAVelength[1/2][:CW]

AVAilable? Returns the available wavelength(s) 109

STATus

Command Description Page

Table 2-1 Specific Command Summary, continued
38



Specific Commands

Specific Command Summary
:PRESet Presets all registers and queues. 58

STATus:OPERation

[:EVENt]? Returns the event register. 56

:CONDition? Returns the condition register. 56

:ENABle/? Sets or queries the enable mask for the event register. 56

STATus:POWer

:ACDC? Queries how the battery is powered. 57

:CAPacity? Returns the power capacity of the battery. 57

:CURRent? Returns the current of the battery in mA. 58

:REMain? Returns the operating time in minutes. 58

STATus:QUEStionable

[:EVENt]? Returns the event register. 59

:CONDition? Returns the condition register. 59

:ENABle/? Sets or queries the enable mask for the event register. 59

SYSTem

:BRIDge Passes communication from serial port 1 to serial port 2 61

:DATE/? Sets or returns the OTDR’s internal date. 69

:ERRor? Returns the contents of the OTDR’s error queue. 70

:HELP? Returns a Help page on a specified topic 70

:KEY/? Simulates or Returns a key stroke on the OTDR’s front panel.71

:PRESet Loads a predefined instrument setting. 73

:SET/? Sets or returns the current setting 73

:TIME/? Sets or returns the OTDR’s internal time. 74

:UPTime? Returns the time (in seconds) run on the OTDR 74

:VERSion? Returns the OTDR’s SCPI version 75

Command Description Page

Table 2-1 Specific Command Summary, continued
39



Specific Commands

Specific Command Summary
SYSTem:COMMunicate

:GPIB[:SELF]:ADDRess/?Sets or returns the OTDR’s GP/IB address. 61

SYSTem:COMMunicate:SERial

:FEED/? Sends a command or query to serial port 2 64

[:RECeive]:PORT? Returns the port used (RS232 or RS485) by the Rack OTDR68

[:RECeive]:SBITS/? Sets or queries the number of stop bits. 68

SYSTem:COMMunicate:SERial[1|2][:RECeive]

:BAUD/? Sets or queries the baud rate. 62

:BITS/? Sets or queries the number of data bits. 63

:PACE/? Sets or queries the pace for the communication. 65

:PARity[:TYPE]/? Sends or returns the parity 66

:PARity:CHECk/? Activates the parity. 67

TRACe

:CATalog? Returns positions and names of currently loaded traces.110

:DATA? Reads a complete trace data array. 111

:DELete Closes the current trace. 117

:DELete:ALL Closes all loaded traces. 117

:FEED:CONTrol/? Sets or queries the current trace. 117

:FREE? Returns the number of unused trace array values. 118

:POINts Sets the number of samples for the current trace. 118

:POINts? Returns the number of data points of the current trace. 119

TRACe:DATA

:FCRetloss? Returns the Front Connector return loss 112

:LINE? Reads samples 114

:TABLe? Returns an event table. 115

Command Description Page

Table 2-1 Specific Command Summary, continued
40



Specific Commands

Specific Command Summary
:TABLe:LOCK/? Sets or queries whether or not event table is locked. 115

:TORL? Returns the total optical return loss 116

:VALue? Returns a measured value at a sample point. 116

TRACe:DATA:CHECk

:TABLe? Returns a Trace Checker table. 111

:STATe? Queries the Trace Checker Table state. 112

TRACe:DATA:LANDmark

:ADD Adds a landmark 112

:DELete Deletes a landmark 113

TRAFficdet/? Sets/queries whether traffic detection is on or off 82

Command Description Page

Table 2-1 Specific Command Summary, continued
41



Specific Commands

Specific Command Summary
42



3

3 Instrument Setup and
Status



44

Instrument Setup and
Status

This chapter gives descriptions of commands that you can use when
setting up your OTDR. The commands are split into the following
separate subsystems:

 • IEEE Specific commands: which were introduced in “Common
Commands” on page 20

 • :STATUS: commands which relate to the status model.

 • :SYSTEM: commands which control the serial interface and
internal data.

Other commands are described in Chapter 4 “Operations on Traces
and Measurements”, and Chapter 5 “Mass Storage, Display, and
Print Functions”.



Instrument Setup and Status

IEEE-Common Commands

he

ized

uest
3.1 IEEE-Common Commands

“Common Commands” on page 20 gave a brief introduction to t
IEEE-common commands which can be used with OTDRs. This
section gives fuller descriptions of each of these commands.

command: *CLS
syntax: *CLS

description: The CLear Status command *CLS clears all the event registers summar
in the Status Byte register.
Except for the output queue, all queues summarized in the Status Byte
register are emptied. The error queue is emptied.
Neither the Standard Event Status Enable register, nor the Service Req
Enable register are affected by this command.
After the *CLS command the instrument is left in the idle state. The
command does not alter the instrument setting.

parameters: none
response: none
example: *CLS

affects: All instruments
45



Instrument Setup and Status

IEEE-Common Commands

ot

f the
command: *ESE
syntax: *ESE<wsp><value>

description: The standard Event Status Enable command (*ESE) sets bits in the
Standard Event Status Enable register.
A 1 in a bit in the enable register enables the corresponding bit in the
Standard Event Status register.
The register is cleared at power-on. The *RST and *CLS commands do n
affect the register.

parameters: The bit value for the register (ashort or afloat):
Bit Mnemonic Decimal Value
7 (MSB) Power On 128
6 User Request 64
5 Command Error 32
4 Execution Error 16
3 Device Dependent Error 8
2 Query Error 4
1 Request Control 2
0 (LSB) Operation Complete 1

response: none
example: *ESE 21

affects: All instruments

command: *ESE?
syntax: *ESE?

description: The standard Event Status Enable query *ESE? returns the contents o
Standard Event Status Enable register (see *ESE for information on this
register).

parameters: none
response: The bit value for the register (ashort value).
example: *ESE? → 21<END>

affects: All instruments
46



Instrument Setup and Status

IEEE-Common Commands

f the
command: *ESR?
syntax: *ESR?

description: The standard Event Status Register query *ESR? returns the contents o
Standard Event Status register. The register is cleared after being read.

parameters none
response The bit value for the register (ashort or afloat):

Bit Mnemonic Decimal Value
7 (MSB) Power On 128
6 User Request 64
5 Command Error 32
4 Execution Error 16
3 Device Dependent Error 8
2 Query Error 4
1 Request Control 2
0 (LSB) Operation Complete 1

example: *ESR? → 21<END>
affects: All instruments

command: *FTY
syntax: *FTY

description: The FacTorY defaults command *FTY resets your OTDR to the factory
defaults and reboots the OTDR.

parameters: none
response: none
example: *FTY

affects: Mini-OTDR and Rack OTDR only
47



Instrument Setup and Status

IEEE-Common Commands

he

0

ary
command: *IDN?
syntax: *IDN?

description: The IDeNtification query *IDN? gets the instrument identification over t
interface.

parameters: none
response: The identification terminated by <END>:

HP E6000A Mini-Optical Time Domain Reflectometer Mainframe:
nnnnnnnnnn, Module:mmmmmmmmmmSW_Revi.j

HP:
mmmm:
ssssssss
rrrrrrrrrr
SW_Revi.j

manufacturer
instrument model number (for example E6000A)
serial number
firmware revision level
Software Revision number, for example 1.1 or 1.

example: *IDN? → HP E6000A Mini Optical Time Domain
Reflectometer Mainframe 0123456789, Module:
ABCDE54321 SW_Rev 1.1<END>

NOTE The response from *IDN? for Rack OTDRs and Mainframe
OTDRs is respectively:

HP E60 xxA Rack Optical Time Domain Reflectometer...

and

HP 8147 Optical Time Domain Reflectometer...

affects: All instruments

command: *LRN?
syntax: *LRN?

description: The LeaRN query *LRN? reads the complete instrument setting in a bin
block. The binary block can be directly stored as a setting file.

parameters: none
response: Binary block.
example: *LRN? → binblock

affects: All instruments
48



Instrument Setup and Status

IEEE-Common Commands

its in

se,

to
command: *OPC?
syntax: *OPC?

description: The OPeration Complete query *OPC? parses all program message un
the input queue.
If a print, measurement or scan trace is active, *OPC? returns 0. Otherwi
*OPC? returns 1.

The following actions cancel the *OPC? query (and put the instrument in
Operation Complete, Command Idle State):

 • Power-on

 • the Device Clear Active State is asserted on the interface.

 • *CLS

 • *RST
parameters: none

response: 0<END>print, measurement, Scan Trace active, or
1<END>

example: *OPC? → 1<END>
affects: All instruments
49



Instrument Setup and Status

IEEE-Common Commands

d

command: *OPT?
syntax: *OPT?

description: The OPTions query *OPT? gets a list of the installed options over the
interface. All three options are always listed, in the same order, separate
by commas. If an option is not installed in the instrument, 0 is sent in its
position in the list.

parameters: none
response: E4310A response:

module-type|0, DC|0, PRINTER|0, COLOR|0, HPIB|0, LAN|0

Mini-OTDR response:
module-type|0, FLOPPY|0, COLOR|0, EXTFLASH|0,
submodule-type: submodule serial no|0

Rack OTDR response:
module-type|0, FLOPPY|0, COLOR|0, EXTFLASH|0,
submodule-type: submodule serial no|0 RS232|RS485

NOTE The second and third arguments for the Rack OTDR (FLOPPY
and COLOR) are included for the sake of consistency.

The Rack OTDR has no floppy option, and is always configured as
a color unit.

NOTE In this release of the Mini-OTDR and Rack OTDR, the fourth
argument (EXTFLASH) will always be 0.

example: E4310A example:
*OPT? → E4316A, DC, 0, 0, HPIB, LAN<END>

Mini-OTDR example:
*OPT? → E6003A, FLOPPY, 0, 0, E6006A :
DE13A00108<END>

Rack OTDR example:
*OPT? → E6053A, 0, 0, 0, 0 RS485<END>

affects: All instruments
50



Instrument Setup and Status

IEEE-Common Commands
command: *RCL
syntax: *RCL<wsp><location>

description: The instrument setting is changed to one saved on the internal storage
device. Saved settings are in the formn.SET, so*RCL 2  recalls setting
SET2.SET.

parameters: ashort value (between 0 and 5) giving the number of the setting to be
saved.

response: none
related commands *SAV

example: *RCL 3
affects: All instruments
51



Instrument Setup and Status

IEEE-Common Commands

ard

T

command: *RST
syntax: *RST

description: The ReSeT command *RST sets the instrument to reset setting (stand
setting) stored in internal storage.
Pending *OPC? actions are cancelled.
The instrument is placed in the idle state awaiting a command. The *RS
command clears the error queue.
The following are not changed:
 • Output queue

 • Service Request Enable register (SRE)

 • Standard Event Status Enable register (ESE)

The following parameters are reset

 • Start: 0 km (Auto)

 • Stop: 2 km (Auto) (Mini and Rack); 40 km (Auto) (Mainframe OTDR)

 • Pulsewidth: 1 µs (Auto)

 • First Wavelength: 1310 nm

 • Refractive Index, Scatter Coefficient: nominal for 1310 nm

 • Measurement Mode: Averaging

 • Averaging Time: 3 min (Mini and Rack); unlimited (Mainframe OTDR)

 • Optimize Mode: Standard

 • Data Points: 16000

 • Front Connector Threshold: -30 dB

 • Reflective Threshold: 0
 • Non-Reflective Threshold: 0
 • End Threshold: 5 dB (Mini and Rack); 3 dB (Mainframe OTDR)

parameters: none
response: none
example: *RST

affects: All instruments
52



Instrument Setup and Status

IEEE-Common Commands

to
e

command: *SAV
syntax: *SAV<wsp><location>

description: With the SAVe command *SAV the instrument setting is stored on the
internal storage device. The instrument can store 4 settings, in locations 1
4. The scope of the saved setting is identical to the standard setting (se
*RST).
Settings are in the formn.SET, so*SAV 2  saves the current setting as
SET2.SET.

parameters: ashort value (between 0 and 5) giving the number of the setting to be
saved.

related commands: *RCL
response: none
example: *SAV 3

affects: All instruments
53



Instrument Setup and Status

IEEE-Common Commands

he
e

nd

f-
he
command: *STB?
syntax: *STB?

description: The STatus Byte query *STB? returns the contents of the Status Byte
register.
The Master Summary Status (MSS) bit is true when any enabled bit of t
STB register is set (excluding Bit 6). The Status Byte register including, th
master summary bit, MSS, is not directly altered because of an *STB?
query.

parameters: none
response: The bit value for the register (ashort value):

Bit Mnemonic Decimal Value
7 (MSB) Operation Status 128
6 Master Summary Status 64
5 Event Status Bit 32
4 Message Available 16
3 Questionable Status 8
2 Not used 0
1 Not used 0
0 (LSB) Laser Active Bit 1

example: *STB? → 1<END>
affects: All instruments

command: *TST?
syntax: *TST?

description: The self-TeST query *TST? makes the instrument perform a self-test a
place the results of the test in the output queue.
No further commands are allowed while the test is running. After the sel
test the instrument is returned to the setting that was active at the time t
self-test query was processed.

parameters: none
response: The sum of the results for the individual tests (a32-bit signed integer

value):
example: *TST? → 0<END>

affects: All instruments
54



Instrument Setup and Status

IEEE-Common Commands

l

command: *WAI
syntax: *WAI

description: The WAIt command *WAI prevents the instrument from executing any
further commands until the current command has finished executing. Al
pending operations are completed during the wait period.

parameters: none
response: none
example: *WAI

affects: All instruments
55



Instrument Setup and Status

Status Reporting – The STATus Subsystem

the
n

3.2 Status Reporting – The STATus Subsystem

The Status subsystem allows you to return and set details from 
Status Model. For more details, see “HP OTDR Status Model” o
page 23

command: STATus:OPERation[:EVENt]?
syntax: STATus:OPERation[:EVENt]?

description: Queries the operation event register
parameters: none

response: The bit value for the operation event register as ashort value
(0 .. +32767)

example: stat:oper? → +0<END>

affects: All instruments

command: STATus:OPERation:CONDition?
syntax: STATus:OPERation:CONDition?

description: Queries the operation condition register
parameters: none

response: The bit value for the operation condition register as ashort value
(0 .. +32767)

example: stat:oper:cond? → +16<END>

affects: All instruments

command: STATus:OPERation:ENABle
syntax: STATus:OPERation:ENABle<wsp><value>

description: Sets the operation enable mask for the event register
parameters: The bit value for the operation enable mask as ashort value

(0 .. +32767)
response: none
example: stat:oper:enab 128

affects: All instruments
56



Instrument Setup and Status

Status Reporting – The STATus Subsystem
command: STATus:OPERation:ENABle?
syntax: STATus:OPERation[:ENABle]?

description: Returns the operation enable mask for the event register
parameters: none

response: The bit value for the operation enable mask as ashort value
(0 .. +32767)

example: stat:oper:enab? → +128<END>

affects: All instruments

command: STATus:POWer:ACDC?
syntax: STATus:POWer:ACDC?

description: Queries how the battery is powered.
parameters: none

response: AC, DC or CHARging
example: stat:pow:acdc? → AC<END>

affects: Mini-OTDR and Rack OTDR only

command: STATus:POWer:CAPacity?
syntax: STATus:POWer:CAPacity?

description: Returns the power capacity of the battery.
parameters: none

response: percentage capacity of the battery
example: stat:pow:cap? → 75%<END>

affects: Mini-OTDR and Rack OTDR only
57



Instrument Setup and Status

Status Reporting – The STATus Subsystem
command: STATus:POWer:CURRent?
syntax: STATus:POWer:CURRent?

description: Returns the current of the battery in mA.
parameters: none

response: Battery current

NOTE If the battery is discharging, the returned value will be negative.

If the battery is charging, the returned value will be positive.

example: stat:pow:curr? → 200MA<END>

affects: Mini-OTDR and Rack OTDR only

command: STATus:POWer:REMain?
syntax: STATus:POWer:REMain?

description: Returns the operating time in minutes
parameters: none

response: Remaining time
example: stat:pow:rem? → 180MIN<END>

affects: Mini-OTDR and Rack OTDR only

command: STATus:PRESet
syntax: STATus:PRESet

description: Resets both enable masks to 0.
parameters: none

response: none
example: stat:pres

affects: All instruments
58



Instrument Setup and Status

Status Reporting – The STATus Subsystem
command: STATus:QUEStionable[:EVENt]?
syntax: STATus:QUEStionable[:EVENt]?

description: Queries the questionable event register
parameters: none

response: The bit value for the questionable event register as ashort value
(0 .. +32767)

example: stat:ques? → +0<END>

affects: All instruments

command: STATus:QUEStionable:CONDition?
syntax: STATus:QUEStionable:CONDition?

description: Queries the condition register
parameters: none

response: The bit value for the questionable condition register as ashort value
(0 .. +32767)

example: stat:ques:cond? → +8<END>

affects: All instruments

command: STATus:QUEStionable:ENABle
syntax: STATus:QUEStionable:ENABle<wsp><value>

description: Sets the questionable enable mask for the event register
parameters: The bit value for the questionable enable mask as ashort value

(0 .. +32767)
response: none
example: stat:ques:enab 128

affects: All instruments
59



Instrument Setup and Status

Status Reporting – The STATus Subsystem
command: STATus:QUEStionable:ENABle?
syntax: STATus:QUEStionable[:ENABle]?

description: Returns the questionable enable mask for the event register
parameters: none

response: The bit value for the questionable enable mask as ashort value
(0 .. +32767)

example: stat:ques:enab? → +128<END>

affects: All instruments
60



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem

e

ted

e

3.3 Interface/Instrument Behaviour Settings –
The SYSTem Subsystem

The SYSTem subsystem lets you control the instrument’s serial
interface. You can also control some internal data (like date, tim
zone, and so on)

command: SYSTem:BRIDge
syntax: SYSTem:BRIDge

description: Allows you to send and receive data from the instrument connec
to Serial1 to the instrument connected to Serial 2.
Data characters are passed between Serial 1 and Serial 2 until th
command#SCPI  is detected.

parameters: none
response: none
example: syst:brid

affects: Rack OTDR only

command: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess
syntax: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess<wsp><value>

description: Sets the OTDR’s GP/IB address.

parameters: Valid values for the address are 1 .. 32 (ashort value).

response: none

example: syst:comm:gpib:addr 15

affects: OTDR only
61



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem

200.
.

command: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?
syntax: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?

description: Queries the OTDR’s current GP/IB address.

parameters: none

response: Possible values for the address are 1 .. 32 (ashort value).

example: syst:comm:gpib:addr? → +15<END>

affects: OTDR only

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD
syntax: SYSTem:COMMunicate:SERial[:RECeive]:BAUD<wsp><value>

description: Sets the baud rate for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the baud rate for Serial 1 is set.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid baud rates are 1200, 2400, 9600, 19200,38400, 57600, 115
response: none
example: syst:comm:ser:baud 9600

affects: All instruments
62



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem

0,
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD?
syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD?

description: Returns the current baud rate for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the baud rate for Serial 1 is returned.

parameters: none
response: Possible baud rates are 1200, 2400, 9600, 19200, 38400, 5760

115200
example: syst:comm:ser:baud? → +9600<END>

affects: All instruments

command: SYSTem:COMMunicate:SERial[:RECeive]:BITS
syntax: SYSTem:COMMunicate:SERial[:RECeive]:BITS<wsp><value>

description: Sets the number of data bits for the OTDR’s serial interface.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid numbers are 5 .. 8

response: none

example: syst:comm:ser:bits 6

affects: OTDR only

command: SYSTem:COMMunicate:SERial[:RECeive]:BITS?
syntax: SYSTem:COMMunicate:SERial[:RECeive]:BITS?

description: Returns the number of data bits for the OTDR’s serial interface.

parameters: none

response: Possible numbers are 5 .. 8

example: syst:comm:ser:bits → +6<END>

affects: OTDR only
63



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
command: SYSTem:COMMunicate:SERial:FEED
syntax: SYSTem:COMMunicate:SERial:FEED<wsp><command>

description: Send a command to the instrument connected to Serial 2
parameters: The command given as a text string in "".

response: none
example: syst:comm:ser:feed "init"

affects: Rack OTDR and OTDR only

command: SYSTem:COMMunicate:SERial:FEED?
syntax: SYSTem:COMMunicate:SERial:FEED?<wsp><query>

description: Send a query to the instrument connected to Serial 2
parameters: The query given as a text string in "".

response: none
example: syst:comm:ser:feed? "*idn?" → HP E6000A Mini-

Optical Time Domain Reflectometer Mainframe
0123456789, Module: ABCDE54321 SW_Rev 1.1<END>

affects: Rack OTDR only
64



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE
syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE<wsp>

<pace>
description: Sets the pace for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the pace for Serial 1 is set.

You cannot use this command with a Rack OTDR Option 006
(RS485), as this does not have hardware handshaking.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid values are NONE, HARDware, XONXoff.

NOTE XONX is only available with the E4310A OTDR.
However, for binary disk transfers HARD is recommended, and
XONX is forbidden

response: none
example: syst:comm:ser:pace hard

affects: All instruments
65



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE?
syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE?

description: Returns the pace for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the pace for Serial 1 is requested.

parameters: none
response: Possible values are NONE, HARDware, and XONXoff.

NOTE XONX is only available with the E4310A OTDR.

example: syst:comm:ser:pace? → HARD<END>

affects: All instruments

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity
[:TYPE]

syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity[:TYPE]<wsp>
<parity>

description: Sets the type of parity checking for the OTDR’s serial interface.

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity type for Serial 1 is set.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid values are NONE, ODD, EVEN.

response: none
example: syst:comm:ser:par odd

affects: All instruments
66



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity
[:TYPE]?

syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity[:TYPE]?

description: Returns the type of parity checking for the OTDR’s serial interface.

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity type for Serial 1 is requested.

parameters: none
response: Possible values are NONE, ODD, EVEN.

example: syst:comm:ser:par? → ODD<END>

affects: All instruments

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity:
CHECk

syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity:CHECk<wsp>
<boolean>

description: Determines whether parity checking is enabled for the OTDR’s serial
interface.

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity for Serial 1 is checked.

parameters: Possible values are 0 and 1

response: none

example: syst:comm:ser:par:chec 1

affects: All instruments
67



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem

ce.
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity
:CHECk?

syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity:CHECk?

description: Queries whether parity checking is enabled for the OTDR’s serial interfa

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity checking state for Serial 1 is requested.

parameters: none
response: Possible values are 0: checking disabled

1: checking enabled
example: syst:comm:ser:par:chec? → 1<END>

affects: All instruments

command: SYSTem:COMMunicate:SERial:PORT?
syntax: SYSTem:COMMunicate:SERial:PORT?

description: Inquires the type of second serial port that is configured (Rack
OTDR only).

parameters: none
response: RS232 or RS485
example: syst:comm:ser:port? → RS485 <END>

affects: Rack OTDR only

command: SYSTem:COMMunicate:SERial[:RECeive]:SBITS
syntax: SYSTem:COMMunicate:SERial[:RECeive]:SBITS<wsp><bits>

description: Sets the number of stop bits for the OTDR’s serial interface.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid numbers are ONE, ONEHalf, TWO

response: none

example: syst:comm:ser:sbit two

affects: OTDR only
68



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
command: SYSTem:COMMunicate:SERial[:RECeive]:SBITS?
syntax: SYSTem:COMMunicate:SERial[:RECeive]:SBITS?

description: Returns the number of stop bits for the OTDR’s serial interface.

parameters: none

response: Possible values are ONE, ONEHalf, TWO

example: syst:comm:ser:sbit? → TWO<END>

affects: OTDR only

command: SYSTem:DATE
syntax: SYSTem:DATE<wsp><day>,<month>,<year>

description: Sets the OTDR’s internal date.
parameters: The date in the format day, month,year (short values)

response: none
example: syst:date 20,7,1995

affects: All instruments

command: SYSTem:DATE?
syntax: SYSTem:DATE?

description: Returns the OTDR’s internal date.
parameters: none

response: The date in the format day, month,year (short values)
example: syst:date? → +20,+7,+1995<END>

affects: All instruments
69



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
command: SYSTem:ERRor?
syntax: SYSTem:ERRor?

description: Returns the contents of the OTDR’s error queue. Removes the
returned entry from the queue.

parameters: none
response: The number of the latest error, and its meaning.
example: syst:err? → -113,"Undefined header"<END>

affects: All instruments

command: SYSTem:HELP?
syntax: SYSTem:HELP?<wsp><keyword>

description: Returns a help page corresponding to the specified keyword.
parameters: keyword given as a string in "". For example, "SYSTem",

"SOURce", "DISPlay", "IEEEcommon".
"" returns a list of valid keywords.

response: A Binary block containing the help page.
example: syst:help? "syst" → #3316[help_page]<END>

affects: All instruments
70



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
command: SYSTem:KEY

syntax: SYSTem:KEY<wsp><code>

description: Simulates keystrokes on the OTDR’s frontpanel.

parameters: Valid key codes are as follows:

Mini-OTDR

0:Select key.
1:Run/Stop key.
2:Up key
3:Down key
4:Left key
5:Right key
6:Help key

Rack OTDR

0: Enter/Return
1: <f2>
2: Up arrow
3: Down arrow
4: Left arrow
5: Right arrow
6: <f1>

E4310A OTDR

0: Enter (RPG-click)
1: Softkey 1 (topmost)
2: Softkey 2
3: Softkey 3
4: Softkey 4
5: Softkey 5
6: Softkey 6
7: Help
8: Zoom Horizontal Out
9: Zoom Vertical In
10: Zoom Vertical Out
11: Zoom Horizontal In
12: Next marker
13: Print
14: Full Trace
15: Save
16: Trace/Event
17: Around Marker
18: Auto
19: Run/Stop
20: Decrease Brightness
21: Increase Brightness

response: none

example: syst:key? 1<END>

affects: All instruments
71



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem

l
d

command: SYSTem:KEY?
syntax: SYSTem:KEY?

description: Returns either the last keystroke entered on the OTDR frontpane
(Mini-OTDR and Rack OTDR only), or the last keystroke emulate
by theSYSTem:KEY remote command (all instruments).

parameters: none

response: Valid key codes are as follows:

Mini-OTDR

0:Select key.
1:Run/Stop key.
2:Up key
3:Down key
4:Left key
5:Right key
6:Help key

Rack OTDR

0: Enter/Return
1: <f2>
2: Up arrow
3: Down arrow
4: Left arrow
5: Right arrow
6: <f1>

E4310A OTDR

0: Enter (RPG-click)
1: Softkey 1 (topmost)
2: Softkey 2
3: Softkey 3
4: Softkey 4
5: Softkey 5
6: Softkey 6
7: Help
8: Zoom Horizontal Out
9: Zoom Vertical In
10: Zoom Vertical Out
11: Zoom Horizontal In
12: Next marker
13: Print
14: Full Trace
15: Save
16: Trace/Event
17: Around Marker
18: Auto
19: Run/Stop
20: Decrease Brightness
21: Increase Brightness

example: syst:key? → 1<END>

affects: All instruments
72



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem

er

ary
command: SYSTem:PRESet
syntax: SYSTem:PRESet

description: Loads a predefined instrument setting that is also loaded on pow
on.

parameters: none
response: none
example: syst:pres

affects: All instruments

command: SYSTem:SET
syntax: SYSTem:SET<wsp><setting>

description: Sets the specified instrument setting from a binary block.
parameters: binary block

response: none
example: syst:set binblock

affects: All instruments

command: SYSTem:SET?
syntax: SYSTem:SET?

description: Reads the complete instrument setting in a binary block. The bin
block can be directly stored as a setting file.

parameters: none
response: binary block
example: syst:set? → binblock

affects: All instruments
73



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem

...23

..23

.

command: SYSTem:TIME
syntax: SYSTem:TIME<wsp><hour>,<minute>,<second>

description: Sets the OTDR’s internal time.
parameters: The time in the format hour,minute,second. Hours are counted 0

(short values).
response: none
example: syst:time 20,15,30

affects: All instruments

command: SYSTem:TIME?
syntax: SYSTem:TIME?

description: Returns the OTDR’s internal time.
parameters: none

response: The time in the format hour,minute,second. Hours are counted 0.
(short values).

example: syst:time? → +20,+15,+30<END>

affects: All instruments

command: SYSTem:UPTime?
syntax: SYSTem:UPTime?

description: Returns the time (in seconds) since you switched on your OTDR
parameters: none

response: The time in seconds (int32 value).
example: syst:upt? → 240<END>

affects: Mini-OTDR and Rack OTDR only
74



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
command: SYSTem:VERSion?
syntax: SYSTem:VERSion?

description: Returns the SCPI revision to which the OTDR complies.
parameters: none

response: The revision year and number.
example: syst:vers? → 1995.0<END>

affects: All instruments
75



Instrument Setup and Status

Interface/Instrument Behaviour Settings – The SYSTem
Subsystem
76



4

4 Operations on Traces and
Measurements



78

Operations on Traces
and Measurements

This chapter gives descriptions of commands that you can use when
taking traces and measurements from your OTDR. The commands
are split into the following separate subsystems:

 • Root level commands: general commands.

 • :PROGRAM/:CALCULATE : commands which execute tasks
or calculate values.

 • :SENSE: commands which control measurement parameters.

 • :SOURCE: commands which control the optical source and
markers.

 • :TRACE : commands which relate to the traces in the OTDR’s
memory.

Other commands are described in Chapter 3 “Instrument Setup and
Status”, and Chapter 5 “Mass Storage, Display, and Print
Functions”.



Instrument Setup and Status

Root Layer Commands
4.1 Root Layer Commands

command: ABORt[1/2]
syntax: ABORt[1/2]

description: Stops a running measurement:abor  or abor1 : on the OTDR
abor2 : on the Visual Fault Finder

NOTE You cannot use a Visual Fault Finder with an E4310A OTDR.
You can therefore only useabor  with an E4310A.

parameters: none
response: none
example: abor

affects: All instruments

command: FETCh[:SCAlar]:POWer[:DC]?
syntax: FETCh[:SCALar]:POWer[:DC]?

description: Reads the current power meter value.

NOTE If the power meter is not running, a measurement is triggered.

parameters: none
response: The reference as afloat value in dBm, W or dB.

NOTE If the reference state is absolute, units are dBm or W.
If the reference state is relative, units are dB.

example: fetc:pow? → +4DBM<END>

affects: Mini-OTDR and Rack OTDR only
79



Instrument Setup and Status

Root Layer Commands
command: INITiate[1|2][:IMMediate][:ALL]
syntax: INITiate[1|2][:IMMediate][:ALL]

description: Starts a measurement:init  or init1 : internal source
init2 : power meter

NOTE You cannot use a Visual Fault Finder with an E4310A OTDR.
You can therefore only useinit with an E4310A.

parameters: none
response: none
example: init

affects: All instruments

command: INITiate2[:IMMediate]:CONTinuous
syntax: INITiate2[:IMMediate]:CONTinuous<wsp><boolean>

description: Starts a power meter measurement.

parameters: Aboolean value: 0 – single measurement made
1 – continuous measurement made

response: none
example: init2:cont 1

affects: Mini-OTDR and Rack OTDR only

command: INITiate2[:IMMediate]:CONTinuous?
syntax: INITiate2[:IMMediate]:CONTinuous?

description: Queries whether power meter measurement is continuous

parameters: none
response: Aboolean value: 0 – single measurement

1 – continuous measurement
example: init2:cont? → 1<END>

affects: Mini-OTDR and Rack OTDR only
80



Instrument Setup and Status

Root Layer Commands
command: KEYBoard
syntax: KEYBoard

description: Allows the use of a terminal as an external keyboard

parameters: none
response: none
example: keyb

NOTE keyb  allows you to add text from a terminal (for example, when
specifying the name of a file to be saved). To use this facility, you should
do the following:

1 Attach your OTDR to a terminal. In this context, a terminal is any
PC or palmtop running a terminal program. The terminal should
have its own keyboard.

You can attach the terminal using an RS232 cable. For details of
attaching an RS232 cable to an OTDR, see the appropriate Guide.

2 Enter keyb  from your terminal keyboard.

3 Enter text as required from your terminal keyboard. All text is
treated literally until you enter <CTRL>Z (ASCII character 26)
(see below).

4 To finish entering text, enter<CTRL>Z from your terminal
keyboard.

For example, after [File]<Save As..>New Name, you see a keyboard on
the OTDR screen. Instead of using this keyboard you can enter the
following text from your terminal:

keyb
T1.SOR
^Z

This is the equivalent of enteringT1.SOR from the screen keyboard.

affects: Mini-OTDR and Rack OTDR only
81



Instrument Setup and Status

Root Layer Commands
command: READ[:SCAlar]:POWer[:DC]?
syntax: READ[:SCALar]:POWer[:DC]?

description: Reads the current power meter value.

NOTE The power meter must be running for this command to be
effective

parameters: none
response: The reference as afloat value in dBm, W or dB.

NOTE If the reference state is absolute, units are dBm or W.
If the reference state is relative, units are dB.

example: read:pow? → +4DBM<END>

affects: Mini-OTDR and Rack OTDR only

command: TRAFficdet
syntax: TRAFficdet<wsp><onoff>

description: Turn traffic detection on or off
parameters: ON: turn traffic detection on

OFF: turn traffic detection off.
response: none
example: traf on

affects: Mini-OTDR and Rack OTDR only

command: TRAFficdet?
syntax: TRAFficdet?

description: Queries whether traffic detection is on or off
parameters: none

response: ON: traffic detection is on
OFF: traffic detection is off.

example: traf? → ON<END>

affects: Mini-OTDR and Rack OTDR only
82



Instrument Setup and Status

Playing With Data – The PROGram and CALCulate
Subsystems

e
s

4.2 Playing With Data – The PROGram and
CALCulate Subsystems

The PROGram and CALCulate subsystems allow you to execut
special tasks and calculating several loss and attenuation value

command: PROGram:EXPLicit:CHECk:LIMit
syntax: PROGram:EXPLicit:CHECk:LIMit<wsp><param><wsp><value>

description: Set the Trace Checker limits for the specified parameter.
parameters: Valid values are as follows.

Units

REFLective
NONReflective
ATTenuation
LOSS
LENGTh
TOLerance
NEW events

Units

mdB
mdB
mdB/km
mdB
mm
mm
0=off, non-zero=on

Limit

10000 .. 65000
0 .. 5000
0 .. 5000
0 .. 50000
0 .. 500000000
0 .. 50000000

The units specified above are implied, so you must only enter a
positive integer within the specified limits.

NOTE For more information about the Trace Checker limits, please
consult theE6000A Mini-OTDR User’s Guide(English HP Product
number E6000-91011).

response: none
example: prog:expl:chec:lim refl 30000

affects: Mini-OTDR and Rack OTDR only
83



Instrument Setup and Status

Playing With Data – The PROGram and CALCulate
Subsystems
.

command: PROGram:EXPLicit:CHECk:LIMit?
syntax: PROGram:EXPLicit:CHECk:LIMit?<wsp><param>

description: Query the Trace Checker limits for the specified parameter.
parameters: Valid values/units are: REFLective

NONReflective
ATTenuation
LOSS
LENGTh
TOLerance
NEW events

response: The units and limits as the same as for
PROGram:EXPLicit:CHECk:LIMit on page 83.

NOTE For more information about the Trace Checker limits, please
consult theE6000A Mini-OTDR User’s Guide(English HP Product
number E6000-91011).

example: prog:expl:chec:lim? refl → -30000<END>

affects: Mini-OTDR and Rack OTDR only

command: PROGram:EXPLicit:EXECute
syntax: PROGram:EXPLicit:EXECute<wsp><task>

description: Allows executing special tasks on the OTDR.
parameters: A string specifying the task.

Currently only"scan"  is valid on all instruments.
On the Mini-OTDR and Rack OTDR, you can also enter"check" to
start the Trace Checker.

NOTE Because this command does not accept character data, you must
put quotation marks around the parameterscan  or check .

response: none
example: prog:expl:exec "scan"

affects: All instruments
84



Instrument Setup and Status

Playing With Data – The PROGram and CALCulate
Subsystems
command: PROGram:EXPLicit:NUMBer
syntax: PROGram:EXPLicit:NUMBer<wsp><type>,<value>

description: Sets the threshold.
parameters: REFLective, NONReflective, or END

threshold value (int32) in mdB
response: none
example: prog:expl:numb refl, 60000

affects: All instruments

command: PROGram:EXPLicit:NUMBer?
syntax: PROGram:EXPLicit:NUMBer?<wsp><type>

description: Requests the threshold value.
parameters: REFLective, NONReflective, or END

response: threshold value (int32) in mdB
example: prog:expl:numb? refl → 60000<END>

affects: All instruments

command: PROGram:EXPLicit:STATe
syntax: PROGram:EXPLicit:STATe<wsp>"scan",<boolean>

description: Allows terminating the currently running task
parameters: Aboolean value: 0 – terminate the task

1 – no action
response: none
example: prog:expl:stat "scan",0

affects: All instruments
85



Instrument Setup and Status

Playing With Data – The PROGram and CALCulate
Subsystems

/km.
command: PROGram:EXPLicit:STATe?
syntax: PROGram:EXPLicit:STATe?<wsp>"scan"

description: Queries whether a task is still running.
parameters: none

response: Aboolean value: 0 – task is not running
1 – task is still running

example: prog:expl:stat? "scan" → 1<END>

affects: All instruments

command: CALCulate:MATH:EXPRession:NAME?
syntax: CALCulate:MATH:EXPRession:NAME?<wsp><expr>

description: Allows calculating several loss and attenuation values. All
calculations use the stretch between markers A and B.

parameters: Valid values are: LOSS
LSAattenuation
ATTenuation.
ORL: Optical Return Loss

response: The loss is returned in dB. The attenuations are returned in mdB
example: calc:math:expr:name? att → 291MDB/KM<END>

affects: All instruments
86



Instrument Setup and Status

Playing With Data – The PROGram and CALCulate
Subsystems
command: CALCulate:MATH:EXPRession:REFLex?
syntax: CALCulate:MATH:EXPRessionREFLex?<wsp><pos1>,<pos2>,

<pos3>
description: Calculate the Reflectance of an event

NOTE The active marker must be at the position of the Event.

parameters: 3 aux marker positions with length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.

response: reflectance or reflection height in dB

NOTE The type of measurement given (reflectance or reflection height)
depends on how you have configured your instrument.
You specify a new configuration withcalc:math:expr:type .

example: calc:math:expr:refl? 9.5km,9800m,1001000cm →
-55.5000DB (Marker at 10km).

affects: All instruments

command: CALCulate:MATH:EXPRession:SPLice?
syntax: CALCulate:MATH:EXPRession:SPLice?<wsp><pos1>,<pos2>,

<pos3>,<pos4>
description: Calculate the splice loss of an event.

NOTE The active marker must be at the position of the splice.

parameters: 4 aux marker positions with length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.

response: splice loss in mdB
example: calc:math:expr:spl? 9.5km,9800m,10500m,10.8km →

100MDB (Marker at 10km).
affects: All instruments
87



Instrument Setup and Status

Playing With Data – The PROGram and CALCulate
Subsystems
command: CALCulate:MATH:EXPRession:TYPE
syntax: CALCulate:MATH:EXPRession:TYPE<wsp><type>

description: Sets the reflection parameter used for the return value of
calc:math:expr:refl? and the event table (for example,
trac:data:tabl ).

parameters: Valid values are: REFLectance and HEIGht.
response: none
example: calc:math:expr:type refl

affects: Mini-OTDR and Rack OTDR only

command: CALCulate:MATH:EXPRession:TYPE?
syntax: CALCulate:MATH:EXPRession:TYPE?

description: Queries the reflection parameter used for the return value of
calc:math:expr:refl? and the event table (for example,
trac:data:tabl ).

parameters: none
response: REFL or HEIG
example: calc:math:expr:type → REFL<END>

affects: Mini-OTDR and Rack OTDR only
88



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem

rs

by

t.
4.3 Measurement Functions – The SENSe
Subsystem

The SENSe subsystem lets you control measurement paramete
like the averaging time, the detector’s bandwidth, and fiber
parameters.

command: SENSe:AVERage:COUNt
syntax: SENSe:AVERage:COUNt<wsp><value>

description: Sets the averaging time.
parameters: Averaging time in seconds (ashort value).

A value of 0 means that the measurement runs until it is stopped 
the user.

response: none
example: sens:aver:coun 180

affects: All instruments

command: SENSe:AVERage:COUNt?
syntax: SENSe:AVERage:COUNt?<wsp><boolean>

description: Queries the averaging time.
parameters: A boolean value: 0 – returns averaging time

1 – returns time elapsed since start of measuremen
response: Averaging time in seconds (ashort value).

NOTE If your instrument is configured to measure Number of Averages,
rather than Averaging Time, you receive a response of 0.
Usesens:aver:coun  to configure your instrument for
Averaging Time (Mini-OTDR only).

example: sens:aver:coun? 0 → +180<END>

affects: All instruments
89



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem

by

t.
command: SENSe:AVERage:COUNt:NUMBer
syntax: SENSe:AVERage:COUNt:NUMBer<wsp><value>

description: Sets the number of averages to measure.
parameters: Number of averages as a power of 2 (ashort value).

For example, if you enter 14, 214 averages are taken.
A value of 0 means that the measurement runs until it is stopped 
the user.

NOTE You may only enter 0 or an integer between 14 and 22.

response: none
example: sens:aver:coun:numb 14

affects: Mini-OTDR and Rack OTDR only

command: SENSe:AVERage:COUNt:NUMBer?
syntax: SENSe:AVERage:COUNt?<wsp><boolean>

description: Queries the number of averages measured.
parameters: A boolean value: 0 – returns averaging time

1 – returns time elapsed since start of measuremen
response: Number of averages as a power of 2 (ashort value).

For example, if you see 14, the instrument is configured to take 214

averages.

NOTE If your instrument is configured to measure Averaging Time,
rather than Number of Averages, you receive a response of 0.
Usesens:aver:coun:numb  to configure your instrument for
Number of Averages.

example: sens:aver:coun? 0 → 14<END>

affects: Mini-OTDR and Rack OTDR only.
90



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem
command: SENSe:DETector[:FUNCtion]
syntax: SENSe:DETector[:FUNCtion]<wsp><mode>

description: Sets the current measurement mode.
parameters: Valid modes are: AVERage

REAL time
CONTinue
CW
RETLoss (E4310A only)
M2kHz (Mini-OTDR and Rack OTDR only)

response: none
example: sens:det aver

affects: All instruments

command: SENSe:DETector[:FUNCtion]?
syntax: SENSe:DETector[:FUNCtion]?

description: Returns the current measurement mode.
parameters: none

response: Possible responses are:AVERage
REAL time
CONTinue
CW
RETLoss (E4310A only)
M2kHz (Mini-OTDR and Rack OTDR only)

example: sens:det? → AVER<END>

affects: All instruments
91



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem
command: SENSe:DETector[:FUNCtion:]AUTO
syntax: SENSe:DETector[:FUNCtion]:AUTO<wsp><boolean>

description: Enables or disables the automatic measurement mode.
parameters: Aboolean value: 0 – disable auto mode

1 – enable auto mode
response: none
example: sens:det:auto 1

affects: All instruments

command: SENSe:DETector[:FUNCtion:]AUTO?
syntax: SENSe:DETector[:FUNCtion]:AUTO?

description: Queries whether the automatic measurement mode is enabled.
parameters: none

response: Aboolean value: 0 – auto mode disabled
1 – auto mode enabled

example: sens:det:auto? → 1<END>

affects: All instruments

command: SENSe:DETector[:FUNCtion:]OPTimize
syntax: SENSe:DETector[:FUNCtion]:OPTimize<wsp><mode>

description: Sets the optimization mode
parameters: Valid modes are: NONE – standard optimization

RESolution – optimize for resolution
DYNamic – optimize for dynamic
LINearity - optimize for linearity (E4310A only)

response: none
example: sens:det:opt res

affects: All instruments
92



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem
command: SENSe:DETector[:FUNCtion:]OPTimize?
syntax: SENSe:DETector[:FUNCtion]:OPTimize?

description: Returns the current optimization mode.
parameters: none

response: Possible modes are NONE – standard optimization
RESolution – optimize for resolution
DYNamic – optimize for dynamic
LINearity - optimize for linearity (E4310A only)

example: sens:det:opt?→ RES<END>
affects: All instruments

command: SENSe:DETector:MODE
syntax: SENSe:DETector:MODE<wsp><mode>

description: Selects the mode of the OTDR screen
parameters: Valid modes are: OTDR – OTDR mode

BREAK – Fiber Break Locator
SOURce – Source mode

response: none
example: sens:det:mode otdr

affects: Mini-OTDR and Rack OTDR only

command: SENSe:DETEctor:MODE?
syntax: SENSe:DETector:MODE?

description: Returns the current mode of the OTDR
parameters: none

response: Possible modes are OTDR, BREAK, SOUR
example: sens:det:mode → OTDR<END>

affects: Mini-OTDR and Rack OTDR only
93



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem
command: SENSe:DETector:SAMPle:DISTance?
syntax: SENSe:DETector:SAMPle:DISTance?

description: Queries the current sample distance.
parameters: none

response: The sample distance in mm.
example: sens:samp:dist? → +4600<END>

affects: All instruments

command: SENSe:FIBer:REFRindex
syntax: SENSe:FIBer:REFRindex<wsp><value>

description: Sets the fiber’s refractive index.
parameters: The refractive index (afloat value).

response: none
example: sens:fib:refr 1.458

affects: All instruments

command: SENSe:FIBer:REFRindex?
syntax: SENSe:FIBer:REFRindex?

description: Returns the current refractive index.
parameters: none

response: The refractive index (afloat value).
example: sens:fib:refr? → +1.4580000<END>

affects: All instruments
94



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem
command: SENSe:FIBer:SCATtercoeff
syntax: SENSe:FIBer:SCATtercoeff<wsp><value>[dB|mdB]

description: Sets the fiber’s scatter coefficient.
parameters: The scatter coefficient in mdB (default) or dB (afloat value).

response: none
example: sens:fib:scat 51500mdb

affects: All instruments

command: SENSe:FIBer:SCATtercoeff?
syntax: SENSe:FIBer:SCATtercoeff?

description: Returns the current scatter coefficient.
parameters: none

response: The scatter coefficient in dB (afloat value).
example: sens:fib:scat? → +51.500DB<END>

affects: All instruments

command: SENSe:FIBer:TYPE?
syntax: SENSe:FIBer:TYPE?

description: Queries the fiber type of the measurement module.
parameters: none

response: Possible values are: MONomode
MULTimode

example: sens:fib:type? → MULT<END>

affects: All instruments
95



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem

Hz
command: SENSe:POWer:FREQuency?
syntax: SENSe:POWer:FREQuency?

description: Queries the detected power meter input frequency.
parameters: none

response: Valid responses are: CW, LI, and the current frequency in Hz or K
example: sens:pow:freq? → 270HZ<END>

affects: Mini-OTDR and Rack OTDR only

command: SENSe:POWer:REFerence
syntax: SENSe:POWer:REFerence<wsp><value>

[pW|nW|uW|mW|Watt|dBm]
description: Sets the power meter reference value
parameters: The reference as afloat value. You may append a unit type.

Valid units are: pW, nW, uW, mW, Watt, and dBm.
If no unit type is specified, dBm is implied.

response: none
example: sens:pow:ref 4dBm

affects: Mini-OTDR and Rack OTDR only

command: SENSe:POWer:REFerence?
syntax: SENSe:POWer:REFerence?

description: Queries the power meter reference value and units
parameters: none

response: The reference as afloat value in dBm, W or dB.

NOTE If the reference state is relative, units are dBm or W.
If the reference state is absolute, units are dB

example: sens:pow:ref? → +4DBM<END>

affects: Mini-OTDR and Rack OTDR only
96



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem
command: SENSe:POWer:REFerence:DISPlay
syntax: SENSe:POWer:REFerence:DISPlay

description: Takes the current power meter value as the reference value
parameters: none

response: none
example: sens:pow:ref:disp

affects: Mini-OTDR and Rack OTDR only

command: SENSe:POWer:REFerence:STATe
syntax: SENSe:POWer:REFerence:STATe<wsp><boolean>

description: Sets the power meter display to relative or absolute
parameters: Aboolean value: 0 – relative

1 - absolute
response: none
example: sens:pow:ref:stat 1

affects: Mini-OTDR and Rack OTDR only

command: SENSe:POWer:REFerence:STATe?
syntax: SENSe:POWer:REFerence:STATe?

description: Inquires whether the current power meter display is relative or
absolute

parameters: none
response: Aboolean value: 0 – relative

1 - absolute
example: sens:pow:ref:stat? → 1<END>

affects: Mini-OTDR and Rack OTDR only
97



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem
command: SENSe:POWer:UNIT
syntax: SENSe:POWer:UNIT<wsp><boolean>

description: Sets the power meter power unit
parameters: Aboolean value: 0 – dBm

1 - Watt
or DBM or W

response: none
example: sens:pow:unit 1

affects: Mini-OTDR and Rack OTDR only

command: SENSe:POWer:UNIT?
syntax: SENSe:POWer:UNIT?

description: Inquires the current power meter power unit
parameters: none

response: DBM or W
example: sens:pow:unit? → W<END>

affects: Mini-OTDR and Rack OTDR only

command: SENSE:POWer:WAVelength
syntax: SENSE:POWer:WAVelength<wsp><value>[NM | UM | MM | M]

description: Sets the current power meter wavelength.
parameters: The wavelength as afloat value in nm/um/mm/m.

response: none
example: sens:pow:wav 1550E-3um

affects: Mini-OTDR and Rack OTDR only
98



Instrument Setup and Status

Measurement Functions – The SENSe Subsystem
command: SENSE:POWer:WAVelength?
syntax: SENSE:POWer:WAVelength?

description: Inquires the current power meter wavelength.
parameters: none

response: The wavelength as afloat value in nm.
example sens:pow:wav? → +1550NM<END>

affects: Mini-OTDR and Rack OTDR only
99



Instrument Setup and Status

Signal Generation – The SOURce Subsystem
4.4 Signal Generation – The SOURce Subsystem

The SOURce subsystem allows controlling the OTDR’s optical
source. It also controls positions and appearance of the markers

command: [SOURce:]AM[:INTernal]:FREQuency[1]
syntax: [SOURce:]AM[:INTernal]:FREQency[1]<wsp><freq>

description: Sets the modulation frequency of the internal source
parameters: Valid units are: CW, F270HZ, F1KHZ, F2KHZ, and CODE

response: none
example: am:freq f270hz

affects: Mini-OTDR and Rack OTDR only

command: [SOURce:]AM[:INTernal]:FREQuency[1]?
syntax: [SOURce:]AM[:INTernal]:FREQency[1]?

description: Queries the current modulation frequency of the internal source
parameters: none

response: Valid units are: CW, F270HZ, F1KHZ, F2KHZ, and CODE
example: am:freq? → F270HZ<END>

affects: Mini-OTDR and Rack OTDR only

command: [SOURce:]AM[:INTernal]:FREQuency2
syntax: [SOURce:]AM[:INTernal]:FREQency2<wsp><freq>

description: Sets the modulation frequency of the Visual Fault Finder
parameters: Valid units are: CW and F1HZ

response: none
example: am:freq2 f1hz

affects: Mini-OTDR and Rack OTDR only
100



Instrument Setup and Status

Signal Generation – The SOURce Subsystem

der
.

command: [SOURce:]AM[:INTernal]:FREQuency2?
syntax: [SOURce:]AM[:INTernal]:FREQency2?

description: Queries the current modulation frequency of the Visual Fault Fin
parameters: none

response: Valid units are: CW and F1HZ
example: am:freq2? → F1HZ<END>

affects: Mini-OTDR and Rack OTDR only

command: [SOURce:]HOFFset
syntax: [SOURce:]HOFFset<wsp><value>[MM | CM | M | KM | MI | FT |

KFT]
description: Sets the horizontal offset.
parameters: The offset as afloat value. You may append a length unit.

Valid length units are: MM, CM, M, KM, MI, FT, KFT.

NOTE A value of 0 clears the horizontal offset.

response: none
example: hoff 5km

affects: All instruments

command: [SOURce:]HOFFset?
syntax: [SOURce:]HOFFset?

description: Returns the current horizontal offset.
parameters: none

response: The offset as afloat value in the current length unit.
example: hoff? → +5.0000000KM<END>

affects: All instruments
101



Instrument Setup and Status

Signal Generation – The SOURce Subsystem

,

command: [SOURce:]MARKer1|2|3:POINt
syntax: [SOURce:]MARKer1|2|3:POINt<wsp><position>[length unit]

description: Sets the position of the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARK3 is therefore only valid for the E4310A.

parameters: Position in length unit.
response: none
example: mark2:poin 1000m

affects: All instruments

command: [SOURce:]MARKer1|2|3:POINt?
syntax: [SOURce:]MARKer1|2| 3:POINt?

description: Returns the position of the selected marker (MARK1 = marker A
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARK3 is therefore only valid for the E4310A.

parameters: none
response: Position in length unit.
example: mark2:poin? → +1KM <END>

affects: All instruments
102



Instrument Setup and Status

Signal Generation – The SOURce Subsystem
command: [SOURce:]MARKer1|2|3 [:STATe]
syntax: [SOURce:]MARKer1|2|3[:STATe]<wsp><boolean>

description: Activates or disables the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARK3 is therefore only valid for the E4310A.

parameters: Aboolean value: 0 – disables marker
1 – enables marker

response: none
example: mark2 1

affects: All instruments

command: [SOURce:]MARKer1|2|3[:STATe]?
syntax: [SOURce:]MARKer1|2|3[:STATe]?

description: Queries the state of the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARK3 is therefore only valid for the E4310A.

parameters: none
response: Aboolean value: 0 – marker disabled

1 – marker enabled
example: mark2? → 1<END>

affects: All instruments
103



Instrument Setup and Status

Signal Generation – The SOURce Subsystem
command: [SOURce:]POWer:STATe[1|2]
syntax: [SOURce:]POWer:STATe[1|2]

description: Switches the laser of the chosen source on or off:
stat  or stat1 : internal source (default)
stat2 : Visual Light Source

parameters: Aboolean value: 0 – Laser Off
1 - Laser On

response: none
example: pow:stat 1

affects: Mini-OTDR and Rack OTDR only

command: [SOURce:]POWer:STATe[1|2]?
syntax: [SOURce:]POWer:STATe[1|2]?

description: Queries the laser state of the chosen source:
stat  or stat1 : internal source (default)
stat2 : Visual Light Source

parameters: none
response: Aboolean value: 0 – Laser Off

1 - Laser On
example: pow:stat → 1<END>

affects: Mini-OTDR and Rack OTDR only

command: [SOURce:]PULSe:WIDTh
syntax: [SOURce:]PULSe:WIDTh<wsp><value>[NS|US|MS|S]

description: Sets the measurement pulsewidth.
parameters: The pulsewidth in ns/us (afloat value).

response: none
example: puls:widt 3000E-9s

affects: All instruments
104



Instrument Setup and Status

Signal Generation – The SOURce Subsystem
command: [SOURce:]PULSe:WIDTh?
syntax: [SOURce:]PULSe:WIDTh?

description: Returns the measurement pulsewidth.
parameters: none

response: The pulsewidth in ns/us (ashort value).
example: puls:widt? → 3US<END>

affects: All instruments

command: [SOURce:]PULSe:WIDTh:LLIMit?
syntax: [SOURce:]PULSe:WIDTh:LLIMit?

description: Returns the lower limit for the pulsewidth determined by the
measurement hardware.

parameters: none
response: The pulsewidth in ns/us (ashort value).
example: puls:widt:llim? → +10NS<END>

affects: All instruments

command: [SOURce:]PULSe:WIDTh:ULIMit?
syntax: [SOURce:]PULSe:WIDTh:ULIMit?

description: Returns the upper limit for the pulsewidth determined by the
measurement hardware.

parameters: none
response: The pulsewidth in ns/us (a short  value).
example: puls:widt:ulim? → +10US<END>

affects: All instruments
105



Instrument Setup and Status

Signal Generation – The SOURce Subsystem
command: [SOURce:]RANGe:LUNit
syntax: [SOURce:]RANGe:LUNit<wsp><unit>

description: Sets the length unit.
parameters: Valid units are: M – meters

FT – feet
MI – miles

response: none
example: rang:lun m

affects: All instruments

command: [SOURce:]RANGe:LUNit?
syntax: [SOURce:]RANGe:LUNit?

description: Queries the current length unit.
parameters: none

response: Valid units are: M – meters
FT – feet
MI – miles

example: rang:lun? → M<END>

affects: All instruments

command: [SOURce:]RANGe:SPAN
syntax: [SOURce:]RANGe:SPAN<wsp><value>[MM | CM | M | KM | MI |

FT | KFT]
description: Sets the measurement span.
parameters: The span as afloat value. You may append a length unit.

Valid length units are: MM, CM, M, KM, MI, FT, KFT.
response: none
example: rang:span 50mi

affects: All instruments
106



Instrument Setup and Status

Signal Generation – The SOURce Subsystem
command: [SOURce:]RANGe:SPAN?
syntax: [SOURce:]RANGe:SPAN?

description: Returns the current measurement span.
parameters: none

response: The span as afloat value in the current length unit.
example: rang:span? → +80.4670000KM<END>

affects: All instruments

command: [SOURce:]RANGe:STARt
syntax: [SOURce:]RANGe:STARt<wsp><value>[MM | CM | M | KM | MI |

FT | KFT]
description: Sets the starting point for the measurement.
parameters: The start as afloat value. You may append a length unit.

Valid length units are: MM, CM, M, KM, MI, FT, KFT.
response: none
example: rang:star 10km

affects: All instruments

command: [SOURce:]RANGe:STARt?
syntax: [SOURce:]RANGe:STARt?

description: Returns the current starting point for the measurement.
parameters: none

response: The start as afloat value in the current length unit.
example: rang:star? → 10.0000000KM<END>

affects: All instruments
107



Instrument Setup and Status

Signal Generation – The SOURce Subsystem
command: [SOURce:]WAVelength[1|2][:CW]
syntax: [SOURce:]WAVelength[1|2][:CW]<wsp><value>[NM | UM | MM | M]

description: Sets the wavelength for the specified source:
wav or wav1: internal source (default)
wav2: Visual Light source

NOTE wav2 is only included for the sake of consistency. You will never
want to set the Visual Light Source wavelength

NOTE You cannot use a submodule with an E4310A OTDR.
You can therefore only usewav with an E4310A.

parameters: The wavelength as afloat value in nm/um/mm/m.
response: none
example: wav 1550E-3um

affects: All instruments

command: [SOURce:]WAVelength[1|2][:CW]?
syntax: [SOURce:]WAVelength[1:2][:CW]?

description: Inquires the wavelength for the specified source:
WAVelength or WAVelength1: internal source (default)
WAVelength2: Visual Light source

NOTE You cannot use a submodule with an E4310A OTDR.
You can therefore only usewav with an E4310A.

parameters: none
response: The wavelength as afloat value in nm.
example: wav? → +1550NM<END>

affects: All instruments
108



Instrument Setup and Status

Signal Generation – The SOURce Subsystem
command: [SOURce:]WAVelength[1|2][:CW]:AVAilable?
syntax: [SOURce:]WAVelength[1|2][:CW]:AVAilable?

description: Returns the wavelengths for the specified source:
wav or wav1: internal source (default)
wav2: Visual Light source

NOTE You cannot use a submodule with an E4310A OTDR.
You can therefore only usewav:ava? with an E4310A.

parameters: The wavelengths asfloat values separated by commas.
response: none
example: wav:ava? → 1310,1550<END>

affects: All instruments
109



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem

e

ions
4.5 Trace Data Access – The TRACe Subsystem

The TRACe subsystem lets you control the traces loaded into th
OTDR’s memory.

command: TRACe:CATalog?
syntax: TRACe:CATalog?

description: Returns the names of the currently loaded traces and their posit
in the trace array.
There is a maximum of two loaded traces for the Mini-OTDR and
Rack OTDR, and four loaded traces for the Mainframe OTDR.

parameters: none
response: A string terminated by <END>.
example: trac:cat? → "1:TRACE1.SOR 2:TRACE2.SOR"<END>

affects: All instruments
110



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem

as a
command: TRACe:DATA?
syntax: TRACe:DATA?

description: Reads a complete trace data array for the current trace.
parameters: none

response: The data is a Binary Block containing the trace data.

NOTE TRAC:DATA? returns blocks of unsigned short (16-bit) data in
Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola)
use big endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the
low and high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.

example: trac:data? → #48192[..8192 bytes of data..]<END>

affects: All instruments

command: TRACe:DATA:CHECk:TABLe?
syntax: TRACe:DATA:CHECk:TABLe?

description: Returns the Trace Checker Table.
parameters: none.

response: Block containing the trace checker table. The header is the same
binary, but the data is in ASCII format.

example: trac:data:chec:tabl? → block<END>
affects: Mini-OTDR and Rack OTDR only
111



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem
command: TRACe:DATA:CHECk:STATe?
syntax: TRACe:DATA:CHECk:STATe?

description: Returns the current Trace Checker state.
parameters: none

response: Possible values are: INVALID
PASSED
FAILED

example: trac:data:chec:stat? → PASSED<END>

affects: Mini-OTDR and Rack OTDR only

command: TRACe:DATA:FCRetloss?
syntax: TRACe:DATA:FCRetloss?

description: Returns the Front connector Return Loss
parameters: none

response: Return loss in dB.
example: trac:data:fcr? → -35723MDB<END>

affects: All instruments

command: TRACe:DATA:LANDmark:ADD
syntax: TRACe:DATA:LANDmark:ADD<wsp><value>[MM | CM | M |

KM | MI | FT | KFT],<comm>
description: Adds a landmark.
parameters: <value>

<comm>

The landmark position as afloat value. You may append
a length unit. Valid length units are: MM, CM, M, KM,
MI, FT, KFT.
Landmark name, given as a string in " " (max. 40
characters)

response: none
example: trac:data:land:add 2km,"Landmark A"

affects: All instruments
112



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem
command: TRACe:DATA:LANDmark:DELete
syntax: TRACe:DATA:LANDmark:DELete<wsp><value>[MM | CM | M |

KM | MI | FT | KFT]
description: Deletes a landmark.
parameters: The landmark position as afloat value. You may append a length

unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.

response: none
example: trac:data:land:del 2km

affects: All instruments
113



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem
command: TRACe:DATA:LINE?
syntax: TRACe:DATA:LINE?<wsp><start>,<range>,<width>,<minmax>

description: Starting at samplestart , examines the nextwidth  samples, and
notes their minimum/maximum value. (minmax determines whether
it is MIN or MAX).
Repeats this forrange  samples, and stores the resulting line in a
binary block.

parameters: start  (int32) - starting point from which samples are taken.
range  (int32) - number of separate samples analyzed,
width  (int32) - number of points in each sample.
For an illustration of the interpretation of the parameters, see the
diagram below:

NOTE start  + (range *width ) must be less than the number of data
points

range  must be greater than or equal to 4

width  must be greater than 0

minmax  - MIN: minimum value is taken
MAX: maximum value is taken

response: binary block
114



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem

ary,
NOTE TRAC:DATA:LINE?  returns blocks of unsigned short (16-bit)
data in Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola)
use bug endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the
low and high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.

example: trac:data:line? 2,5,2,MAX → block
affects: All instruments

command: TRACe:DATA:TABLe?
syntax: TRACe:DATA:TABLe?

description: Returns an event table.
parameters: none.

response: Block containing the event table. The header is the same as a bin
but the data is in ASCII format.

example: trac:data:tabl? → block
affects: All instruments

command: TRACe:DATA:TABLe:LOCK
syntax: TRACe:DATA:TABLe:LOCK<wsp><boolean>

description: Locks/Unlocks the event table
parameters: Aboolean value: 0: table unlocked

1: table locked
response: none
example: trac:data:tabl:lock 0

affects: All instruments
115



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem
command: TRACe:DATA:TABLe:LOCK?
syntax: TRACe:DATA:TABLe:LOCK?

description: Returns whether the event table is locked.
parameters: none.

response: Aboolean value: 0: table unlocked
1: table locked

example: trac:data:tabl:lock? → 0<END>
affects: All instruments

command: TRACe:DATA:TORL?
syntax: TRACe:DATA:TORL?

description: Returns the Total Optical Return Loss
parameters: none

response: Return loss in dB.
example: trac:data:torl? → + 35.7DB<END>

affects: All instruments

command: TRACe:DATA:VALue?
syntax: TRACe:DATA:VALue?<wsp><sample point>

description: Returns the measured value at the specified sample point.

NOTE The maximum value of <sample point> is determined by
trac:poin?

parameters: The sample point.
response: The measured value in mdB.
example: trac:data:val? 1999 → +31800<END>

affects: All instruments
116



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem
command: TRACe:DELete
syntax: TRACe:DELete

description: Closes the current trace.
parameters: none

response: none
example: trac:del

affects: All instruments

command: TRACe:DELete:ALL
syntax: TRACe:DELete:ALL

description: Closes all loaded traces.
parameters: none

response: none
example: trac:del:all

affects: All instruments

command: TRACe:FEED:CONTrol
syntax: TRACe:FEED:CONTrol<wsp><trace>

description: Specifies the current trace.

NOTE The current trace receives all measurement data and therefore
will be overwritten with every new measurement

parameters: Valid values are: FIRSt
SECond
THIRd (E4310A only)
FOURth (E4310A only)

response: none
example: trac:feed:cont sec

affects: All instruments
117



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem
command: TRACe:FEED:CONTrol?
syntax: TRACe:FEED:CONTrol?

description: Returns the current trace.
parameters: none

response: Possible values are: FIRSt
SECond
THIRd (E4310A only)
FOURth (E4310A only)

example: trac:feed:cont? → SEC<END>

affects: All instruments

command: TRACe:FREE?
syntax: TRACe:FREE?

description: Returns the number of unused trace array fields.
parameters: none

response: Ashort value: 0...2.(0...4 for the E4310A)
example: trac:free? → +2<END>

affects: All instruments

command: TRACe:POINts
syntax: TRACe:POINts

description: Sets the maximum number of samples for the current trace.
parameters: The number of data points (ashort value).

Valid arguments are 4000, 8000, and 16000.
response: none
example: trac:poin 8000

affects: Mini-OTDR and Rack OTDR only
118



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem
command: TRACe:POINts?
syntax: TRACe:POINts?

description: Returns the number of trace data points for the current trace.
parameters: none

response: The number of data points (ashort value).
example: trac:poin? → +8192<END>

affects: All instruments
119



Instrument Setup and Status

Trace Data Access – The TRACe Subsystem
120



5

5 Mass Storage, Display, and
Print Functions



122

Mass Storage, Display,
and Print Functions

This chapter gives descriptions of commands that you can use when
storing and printing traces from your OTDR. The commands are
split into the following separate subsystems:

 • :DISPLAY : commands which relate to what you see on the
OTDR display.

 • :HCOPY: commands which relate to printing operations.

 • :MMEMORY : commands which relate to the OTDR memory.

Other commands are described in Chapter 3 “Instrument Setup and
Status”, and Chapter 4 “Operations on Traces and Measurements”.



Instrument Setup and Status

Display Operations – The DISPlay Subsystem
5.1 Display Operations – The DISPlay Subsystem

The DISPlay subsystem lets you control what you see on the
OTDR’s display.

command: DISPlay:BRIGhtness
syntax: DISPlay:BRIGhtness<wsp><value>

description: Controls the brightness for the display.

parameters: 0 .. 100 (0 ..64 on the E4310A)

response: none
example: disp:brig 32

affects: All instruments

command: DISPlay:BRIGhtness?
syntax: DISPlay:BRIGhtness?

description: Requests the brightness for the display.

parameters: none

response: 0 .. 100 (0 ..64 on the E4310A)

example: disp:brig? → 32<END>

affects: All instruments

command: DISPlay:CONTrast
syntax: DISPlay:CONTrast<wsp><value>

description: Controls the contrast for the display.

parameters: 0 .. 100

response: none
example: disp:cont 50

affects: Mini-OTDR only
123



Instrument Setup and Status

Display Operations – The DISPlay Subsystem
command: DISPlay:CONTrast?
syntax: DISPlay:CONTrast?

description: Requests the contrast for the display.

parameters: none

response: 0 .. 100
example: disp:cont? → 50<END>

affects: Mini-OTDR only

command: DISPlay:ENABle
syntax: DISPlay:ENABle<wsp><boolean>

description: Enables or disables the LCD.
parameters: Aboolean value: 0 – switch off the LCD

1 – switch on the LCD
response: none
example: disp:enab 1

affects: All instruments

command: DISPlay:ENABle?
syntax: DISPlay:ENABle?

description: Queries the state of the LCD.
parameters: none

response: A boolean value: 0 – the LCD is turned off
1 – the LCD is turned on

example: disp:enab? → 1<END>

affects: All instruments
124



Instrument Setup and Status

Display Operations – The DISPlay Subsystem
command: DISPlay[:WINDow]:GRAPhics:COLor
syntax: DISPlay[:WINDow]:GRAPhics:COLor<wsp><color>

description: Changes the color of the current trace.

parameters: The new trace color (ashort value):
BLACk, RED, BLUE, GREen, GREY, WHITe

response: none

example: disp:grap:col blac

affects: OTDR only

command: DISPlay[:WINDow]:GRAPhics:COLor?
syntax: DISPlay[:WINDow]:GRAPhics:COLor?

description: Queries the color of the current trace.

parameters: none

response: The current trace color (ashort value):
BLAC, RED, BLUE, GRE, GREY, WHIT

example: DISPlay[:WINDow]:GRAPhics:COLor?

affects: OTDR only

command: DISPlay[:WINDow]:GRAPhics:LTYPe
syntax: DISPlay[:WINDow]:GRAPhics:LTYPe<wsp><boolean>

description: Changes the linestyle of the current trace.
parameters: Aboolean value: 0 – new linestyle is dotted

1 – new linestyle is solid
response: none
example: disp:grap:ltyp 0

affects: All instruments
125



Instrument Setup and Status

Display Operations – The DISPlay Subsystem
command: DISPlay[:WINDow]:GRAPhics:LTYPe?
syntax: DISPlay[:WINDow]:GRAPhics:LTYPe?

description: Queries the linestyle of the current trace.
parameters: none

response: Aboolean value: 0 – current linestyle is dotted
1 – current linestyle is solid

example: disp:grap:ltyp? → 0<END>

affects: All instruments

command: DISPlay[:WINDow]:TEXT:DATA
syntax: DISPlay[:WINDow]:TEXT:DATA<wsp><c-no>,<comm>

description: Sets a comment in the trace.
parameters: <c-no> 0 .. 4 - comment number

<comm> Comment, given as a string in " " (max. 40 characters)
response: none
example: disp:text:data 0,"This is a Comment"

affects: All instruments

command: DISPlay[:WINDow]:TEXT:DATA?
syntax: DISPlay[:WINDow]:TEXT:DATA? <wsp><c-no>

description: Requests an individual comment
parameters: 0 .. 4 - comment number

response: Comment, given as a string, terminated by <END>
example: disp:text:data? 0 → "This is a Comment"<END>

affects: All instruments
126



Instrument Setup and Status

Display Operations – The DISPlay Subsystem
command: DISPlay[:WINDow]:X:SCALe
syntax: DISPlay[:WINDow]:X:SCALe:<wsp><type>

description: Controls whether the display is in full trace mode or zoomed.

NOTE You must send this command before you perform any zooming
operations.

The DISP ... :PDIV/? commands described below only work
in AROund mode.

parameters: FULLtrace or AROund.
response: none
example: disp:x:scal full

affects: All instruments

command: DISPlay[:WINDow]:X:SCALe?
syntax: DISPlay[:WINDow]:X:SCALe?

description: Queries whether the display is in full trace mode or zoomed.
parameters: none

response: FULLtrace or AROund
example: disp:x:scal? → FULL<END>

affects: All instruments
127



Instrument Setup and Status

Display Operations – The DISPlay Subsystem
command: DISPlay[:WINDow]:X[:SCALe]:PDIVision
syntax: DISPlay[:WINDow]:X[:SCALe]:PDIVision<wsp><value>

description: Determines the scaling of the X-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL ).

parameters: Valid values for the scaling: 0...15 (ashort value):
0 – full trace ...
15– 1 m/DIV

response: none
example: disp:x:pdiv 3

affects: All instruments

command: DISPlay[:WINDow]:X[:SCALe]:PDIVision?
syntax: DISPlay[:WINDow]:X[:SCALe]:PDIVision?

description: Queries the current scaling of the X-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL ).

parameters: none
response: Possible values for the scaling: 0...15 (ashort value):

0 – full trace ....
15 – 1 m/DIV

example: disp:x:pdiv? → +3<END>

affects: All instruments
128



Instrument Setup and Status

Display Operations – The DISPlay Subsystem
command: DISPlay[:WINDow]:Y[:SCALe]:PDIVision
syntax: DISPlay[:WINDow]:Y[:SCALe]:PDIVision<wsp><value>

description: Determines the scaling of the Y-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL ).

parameters: Valid values for the scaling: 1...7 (ashort value):
1 –> 5 dB/DIV....
7 –> 0.1 dB/DIV

response: none
example: disp:y:pdiv 3

affects: All instruments

command: DISPlay[:WINDow]:Y[:SCALe]:PDIVision?
syntax: DISPlay[:WINDow]:Y[:SCALe]:PDIVision?

description: Queries the current scaling of the Y-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL ).

parameters: none
response: Possible values for the scaling: 1...7(ashort value):

1 –> 5 dB/DIV....
7 –> 0.1 dB/DIV

example: disp:y:pdiv? → +3<END>

affects: All instruments
129



Instrument Setup and Status

Print Operations – The HCOPy Subsystem

rol

r

r

5.2 Print Operations – The HCOPy Subsystem

The HCOPy subsystem lets you select the print layout and cont
the printing.

command: HCOPy:ABORt
syntax: HCOPy:ABORt

description: Cancels the current print job.
parameters: none

response: none
example: hcop:abor

affects: All instruments

command: HCOPy:DESTination
syntax: HCOPy:DESTination<wsp><printer>

description: changes the current printing device.
parameters: The printer’s name as a string.

Valid names for the Mini-OTDR and Rack OTDR are:

PCL100DPI : Standard HP-PCL printer (for example, HP LaserJet o
HP DeskJet) @ 100 dots per inch
PCL150DPI : Standard HP-PCL printer (for example, HP LaserJet o
HP DeskJet) @ 150 dots per inch
EPSONPIN: Epson 8-Pin printer
SEIKODPU: Seiko DPU-411/414

Valid name for the E4310A are:

the name of a specific printer, for exampleHP-LASERJET
INTernal : internal printer
EXTernal : external printer

response: none
example: hcop:dest "PCL100DPI"

affects: All instruments
130



Instrument Setup and Status

Print Operations – The HCOPy Subsystem

r

r

fore.
command: HCOPy:DESTination?
syntax: HCOPy:DESTination?

description: Queries the current printing device.
parameters: none

response: The printer’s name as a string terminated by <END>.

Valid names for the Mini-OTDR and Rack OTDR are:

PCL100DPI : Standard HP-PCL printer (for example, HP LaserJet o
HP DeskJet) @ 100 dots per inch
PCL150DPI : Standard HP-PCL printer (for example, HP LaserJet o
HP DeskJet) @ 150 dots per inch
EPSONPIN: Epson Pin printer
SEIKODPU: Seiko DPU-411/414
NONE: no printer configured

Valid name for the E4310A are:

the name of a specific printer, for exampleHP-LASERJET
INTernal : internal printer
EXTernal : external printer

example: hcop:dest? → "PCL100DPI"<END>

affects: All instruments

command: HCOPy[:IMMediate]
syntax: HCOPy[:IMMediate]

description: Immediately starts printing everything that has been selected be
parameters: none

response: none
example: hcop

affects: All instruments
131



Instrument Setup and Status

Print Operations – The HCOPy Subsystem
command: HCOPy:ITEM:ALL[:IMMediate]
syntax: HCOPy:ITEM:ALL[:IMMediate]

description: Immediately starts printing everything.
parameters: none

response: none
example: hcop:item:all

affects: All instruments

command: HCOPy:ITEM[:WINDow][:IMMediate]
syntax: HCOPy:ITEM[:WINDow][:IMMediate]

description: Immediately starts printing the parameter window.
parameters: none

response: none
example: hcop:item

affects: All instruments

command: HCOPy:ITEM[:WINDow]:STATe
syntax: HCOPy:ITEM[:WINDow]:STATe<wsp><boolean>

description: Enables or disables printing the parameter window.
parameters: Aboolean value: 0 – disable

1 – enable
response: none
example: hcop:item:stat 1

affects: All instruments
132



Instrument Setup and Status

Print Operations – The HCOPy Subsystem
command: HCOPy:ITEM[:WINDow]:STATe?
syntax: HCOPy:ITEM[:WINDow]:STATe?

description: Queries printing the parameter window.
parameters: none

response: Aboolean value: 0 – parameter window will not be printed
1 – parameter window will be printed

example: hcop:item:stat? → 1<END>

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TEXT[:IMMediate]
syntax: HCOPy:ITEM[:WINDow]:TEXT[:IMMediate]

description: Immediately starts printing the event table.
parameters: none

response: none
example: hcop:item:text

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TEXT:STATe
syntax: HCOPy:ITEM[:WINDow]:TEXT:STATe<wsp><boolean>

description: Enables or disables printing the event table.
parameters: Aboolean value: 0 – disable

1 – enable
response: none
example: hcop:item:text:stat 1

affects: All instruments
133



Instrument Setup and Status

Print Operations – The HCOPy Subsystem
command: HCOPy:ITEM[:WINDow]:TEXT:STATe?
HCOPy:ITEM[:WINDow]:TEXT:STATe?syntax:

description: Queries whether the event table will be printed.
parameters: none

response: Aboolean value: 0 – event table will not be printed
1 – event table will be printed

example: hcop:item:text:stat? → 1<END>

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe[:IMMediate]
syntax: HCOPy:ITEM[:WINDow]:TRACe[:IMMediate]

description: Immediately starts printing the trace.
parameters: none

response: none
example: hcop:item:trac

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:STATe
syntax: HCOPy:ITEM[:WINDow]:TRACe:STATe<wsp><boolean>

description: Enables or disables printing the trace window.
parameters: Aboolean value: 0 – disable

1 – enable
response: none
example: hcop:item:trac:stat 1

affects: All instruments
134



Instrument Setup and Status

Print Operations – The HCOPy Subsystem
command: HCOPy:ITEM[:WINDow]:TRACe:STATe?
syntax: HCOPy:ITEM[:WINDow]:TRACe:STATe?

description: Queries whether the trace window will be printed.
parameters: none

response: Aboolean value: 0 – trace window will not be printed
1 – trace window will be printed

example: hcop:item:trac:stat? → 1<END>

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe
syntax: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe<wsp>

<boolean>
description: Enables or disables printing the trace window grid.
parameters: Aboolean value: 0 – disable

1 – enable
response: none
example: hcop:item:trac:grat:stat 1

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe?
syntax: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe?

description: Queries printing the trace window grid.
parameters: none

response: Aboolean value: 0 – trace window grid will not be printed
1 – trace window grid will be printed

example: hcop:item:trac:grat:stat? → 1<END>

affects: All instruments
135



Instrument Setup and Status

Print Operations – The HCOPy Subsystem
command: HCOPy:PAGE:SIZE
syntax: HCOPy:PAGE:SIZE<wsp><size>

description: Controls the paper size of the printout.
parameters: Valid parameters are LETTer, A or A4.

Please note that LETTer and A are the same page size.
response: none
example: hcop:page:size A4

affects: All instruments

command: HCOPy:PAGE:SIZE?
syntax: HCOPy:PAGE:SIZE?

description: Queries the current paper size of the printout.
parameters: none

response: A value containing A or A4, terminated by <END>
example: hcop:page:size? → A4<END>

affects: All instruments
136



Instrument Setup and Status

File Operations – The MMEMory Subsystem

s

5.3 File Operations – The MMEMory Subsystem

The MMEMory subsystem gives you access to the OTDR’s
memory and to the storage devices.

command: MMEMory:CATalog?
syntax: MMEMory:CATalog?

description: Returns the contents of the current directory.
parameters: none

response: A binary Block containing the contents of the directory as ASCII
text, separated by CR/LF. The first digit states the number of digit
following. The digits following give the total number of characters in
the list of filenames.

example: mmem:cat? → #229.
..
DEMO1.SOR
DEMO2.SOR
<END>

affects: All instruments

command: MMEMory:CDIRectory
syntax: MMEMory:CDIRectory<wsp><directory>

description: Changes the current directory.
parameters: The directory given as a string in " ".

response: none
example: mmem:cdir "TRACES"

affects: All instruments
137



Instrument Setup and Status

File Operations – The MMEMory Subsystem
command: MMEMory:CDIRectory?
syntax: MMEMory:CDIRectory?

description: Queries the current directory.
parameters: none

response: The directory given as a string terminated by <END>.
example: mmem:cdir? → "TRACES"<END>

affects: All instruments

command: MMEMory:COPY:FILE
syntax: MMEMory:COPY:FILE?<wsp><file>,<newfile>,<device>

description: Copies the specified Bellcore binary file from the current device.
parameters: The file name given as a string in " ".

The name of the new file given as a string in " ".
Device where new file is located: FLASh - internal memory

FLOPpy – diskette
PCMCia - memory card

response: none
example: mmem:copy:file "t0721_01.sor","\abc\test.sor",flop

affects: Mini-OTDR and Rack OTDR only

command: MMEMory:DELete
syntax: MMEMory:DELete<wsp><file>

description: Deletes the specified file from the current directory.
parameters: The file name given as a string in " ".

response: none
example: mmem:del "t0721_01.sor"

affects: All instruments
138



Instrument Setup and Status

File Operations – The MMEMory Subsystem
command: MMEMory:FREE
syntax: MMEMory:FREE

description: Performs garbage collection on internal memory to reclaim free
space.

parameters: none
response: none
example: mmem:free

affects: Mini-OTDR and Rack OTDR only

command: MMEMory:FREE?
syntax: MMEMory:FREE?

description: returns the free and used disk space.
parameters: none

response: <free-space> - the amount of free space
<used-space> - the amount of used space

example: mmem:free? → 125384, 1354789
affects: All instruments

command: MMEMory:INITialize
syntax: MMEMory:INITialize<wsp><device>

description: Formats the specified storage device.
parameters: Valid devices are: FLASh - internal memory

FLOPpy – diskette
PCMCia - memory card

response: none
example: mmem:init flop

affects: Mini-OTDR and Rack OTDR only
139



Instrument Setup and Status

File Operations – The MMEMory Subsystem
command: MMEMory:LOAD:STATe, :LOAD:TRACe
syntax: for example: MMEM:LOAD:STATe<wsp><file>

description: Loads a settings file or a trace file.
parameters: The file name given as a string in " ".

response: none
example: mmem:load:trac "t0721_01.sor"

affects: All instruments

command: MMEMory:LOAD:FILE?
syntax: MMEMory:LOAD:FILE?<wsp><file>

description: Uploads the specified Bellcore binary file from the OTDR.
parameters: The file name given as a string in " ".

response: binblock (Bellcore binary)
example: mmem:load:file? "t0721_01.sor" → binblock

affects: All instruments

command: MMEMory:MDIRectory
syntax: MMEMory:MDIRectory<wsp><directory>

description: Creates a directory on the current storage device.
parameters: The directory given as a string in " ".

response: none
example: mmem:mdir "TRACES"

affects: All instruments
140



Instrument Setup and Status

File Operations – The MMEMory Subsystem

ly)
command: MMEMory:MSIS
syntax: MMEMory:MSIS<wsp><device>

description: Changes the current storage device.
parameters: Valid devices are: FLASh - internal memory (Mini and Rack on

FLOPpy – diskette
HARDdisk (E4310A only)
PCMCia - memory card (Mini and Rack only)

response: none
example: mmem:msis flop

affects: All instruments

command: MMEMory:MSIS?
syntax: MMEMory:MSIS?

description: Queries the current storage device.
parameters: none

response: Possible devices are: FLAS - internal memory (Mini/Rack only)
FLOP – diskette
HARD (E4310A only)
PCMC - memory card (Mini and Rack only)

example: mmem:msis? → FLOP<END>

affects: All instruments

command: MMEMory:NAME
syntax: MMEMory:NAME<wsp><name>

description: Changes the name of the current trace.
parameters: The name given as a string.

response: none
example: mmem:name "t0711_01.sor"

affects: All instruments
141



Instrument Setup and Status

File Operations – The MMEMory Subsystem
command: MMEMory:NAME?
syntax: MMEMory:NAME?

description: Queries the name of the current trace.
parameters: none

response: The name given as a string.
example: mmem:name? → "T0711_01.SOR"<END>

affects: All instruments

command: MMEMory:SAVE:FILE
syntax: MMEMory:SAVE:FILE<wsp><file>,<binblock>

description: Downloads the specified file to the OTDR.
parameters: The file name given as a string in " ".

binblock (Bellcore binary)
response: none
example: mmem:save:file "t0721_01.sor" , binblock

affects: All instruments

command: MMEMory:STORe:STATe, :STORe:TRACe
syntax: for example: MMEMory:STORe:STATe<wsp><file>

description: Saves a setting or a trace under the specified name.
parameters: The file name given as a string in " ".

response: none
example: mmem:stor:trac "t0721_01.sor"

affects: All instruments
142



Instrument Setup and Status

File Operations – The MMEMory Subsystem

e

command: MMEMory:STORe:TRACe:REVision
syntax: MMEMory:STORe:TRACe:REVision<wsp><value>

description: Sets the Bellcore revision number used to store Bellcore files.

NOTE Bellcore revision 1.1 conforms to standards, but you may need to
use Bellcore revision 1.0 for backward compatibility.

parameters: Valid values: (ashort value): 10: Bellcore revision 1.0
11: Bellcore revision 1.1

response: none
example: mmem:stor:trac:rev 11

affects: All instruments

command: MMEMory:STORe:TRACe:REVision?
syntax: MMEMory:STORe:TRACe:REVision?

description: Queries the Bellcore revision number according to which Bellcor
files are stored on your OTDR.

parameters: none
response: Possible values: (ashort value): 10: Bellcore revision 1.0

11: Bellcore revision 1.1
example: mmem:stor:trac:rev? → +11<END>

affects: All instruments
143



Instrument Setup and Status

File Operations – The MMEMory Subsystem
144



6

6 Programming Examples



146

Programming Examples

This section contains some example programs that you can use to
run an OTDR.

This programming examples do not cover the full command set for
the instrument. They are intended only as an introduction to the
method of programming the instrument.

We recommend that you send commands via a program, examples
of which are contained in this chapter. However, for testing
processes you can enter individual commands (for example,
*idn? ) from your terminal program (see “How to Send
Commands and Queries” on page 152).



Programming Examples

How to Connect your OTDR to a PC

DR

e
R”

C.
6.1 How to Connect your OTDR to a PC

This section explains the processes needed to connect your OT
to a PC, and set up a serial interface,

This section contains extracts from a demo program. You can se
the program in full in “SCPI data transfer between PC and OTD
on page 159.

1 Connect the OTDR serial port to the serial interface of the P
Use an HP 24542U cable or an equivalent.

NOTE For more information about attaching cables, consult the appropriate
User’s Guide:

Mini-OTDR User’s Guide (E6000-91011),OTDR User’s Guide (E4310-
91011). orRack OTDR User’s Guide (E6050-91011).

2 If you have no available cable, you can configure your own,
according to the specifications listed in Table 6-1.

Table 6-1 Cable configuration for connection to a PC

Mini-OTDR signal Pin PC-Host signal (9 pin standard) Pin

DCD
RxD
TxD
DTR
GND
DSR
RTS
CTS
RI

[

1
2
3
4
5
6
7
8
9

RTS
TxD
RxD
DSR, CTS
GND
DTR
DCD
DTR
RI

7
3
2
6, 8 (connected)
5
4
1
4
9

147



Programming Examples

How to Connect your OTDR to a PC
How to set the Instrument Configuration

3 If the instrument is not also configured at your PC’s serial
interface, set the following configuration:

 • baud rate of 19200

 • hardware handshaking

 • 8 data bits

 • no parity

 • 1 stop bit
148



Programming Examples

How to Connect your OTDR to a PC

);
NOTE This is the default configuration, so you should only need to send these
commands if the instrument configuration has been altered.

HANDLE InitSerial( int baudrate )
    {
    static HANDLE hSer = CreateFile(
                         INTERFACE,    // use COM1 / Serial A
                         GENERIC_READ | GENERIC_WRITE,
                                       // open for read & write access
                         0, NULL,
                         OPEN_EXISTING,
                                       // well, hopefully ... :-)
                         0, NULL );

    if(!hSer)
        {
        return NULL;
        }

    // configure the interface ...
    DCB dcb;
    COMMTIMEOUTS commtimeout;
    GetCommTimeouts(hSer, &commtimeout);
    commtimeout.ReadIntervalTimeout = 3000;
    commtimeout.ReadTotalTimeoutMultiplier = 200;
    commtimeout.WriteTotalTimeoutMultiplier = 200;
    commtimeout.WriteTotalTimeoutConstant = 3000;
    GetCommState(hSer, &dcb);
    dcb.DCBlength = sizeof(dcb);
    dcb.BaudRate = baudrate;
    dcb.ByteSize = 8;
    dcb.Parity = 0;
    dcb.StopBits = 1;
    dcb.fBinary =  1;
    dcb.fParity = 0 ;
    dcb.fOutX = 0;
    dcb.fInX = 0;
    dcb.fDtrControl = DTR_CONTROL_DISABLE;

dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control

    SetCommState(hSer, &dcb);
    SetCommTimeouts(hSer, &commtimeout);
    ClearCommBreak(hSer);
    PurgeComm(hSer,

PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR

    return hSer;
    }

Figure 6-1 Instrument configuration - example
149



Programming Examples

How to Connect with a Terminal Program

ted

on
6.2 How to Connect with a Terminal Program

1 Start a terminal program on the PC, for exampleterminal.exe
(Win 3.11 or Windows NT), orhypertrm.exe (Windows 95 or
Hyperterminal).

2 Set the transmission parameters in the terminal program as lis
in Table 6-2:

3 Send a test command in terminal mode to the OTDR:

type *IDN?

4 You should see a response, telling you the identity of your
OTDR.

For example, a Mini-OTDR should respond:

HP E6000A Mini Optical Time Domain
Reflectometer.....

If you see this message, or its equivalent, the basic connecti
works.

5 Close the terminal program on the PC.

Closing the terminal program is important, as it avoids later
conflicts with the PC and the interface control.

Table 6-2 Transmission parameters

Speed:
Code, databits:
Communication:
Parity:
Startbits:
Stopbits:
Flow control:

19200 bps (Baud)
8 bit
Full duplex
no parity
1 (not configurable)
1
RTS-CTS (Hardware)
150



Programming Examples

Using a Program to Connect to the OTDR

R

to 3
6.3 Using a Program to Connect to the OTDR

1 Send a new line ("\n" )

2 Send*idn?  to check the identity of the OTDR

3 Check the response to the*idn?  query.

The response should beHP E...<END>  and give details of
the type of OTDR, and the modules used.

The following responses are possible (depending on you OTD
type):

• HP E6000A Mini Optical Time Domain
Reflectometer...

• HP E60 xx A Rack Optical Time Domain
Reflectometer...

• HP 8147 Optical Time Domain
Reflectometer...

4 If you do not receive an appropriate response, repeat steps 1
until you receive the correct response or you give up.

    // write query
    sprintf (txtbuffer, "\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
    sprintf(txtbuffer,"*IDN?\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

    // read response
    ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
    if(cnt == 0 || strlen(txtbuffer) == 0)
        {
        printf("SCPI query failed, exiting!\n");
        CloseHandle(hSerial);
        return;
        }

    // print result (in txtbuffer)
    printf("Connected to: %s\n", txtbuffer);

Figure 6-2 Connection check - example
151



Programming Examples

How to Send Commands and Queries

 a
5 If the response is still incorrect, make the following checks:

How to check the connection

6 Send a break

This resets the instruments and RS232 to the values given in
step 3.

7 Close the device and reopen it.

8 Repeat steps 1 to 4.

6.4 How to Send Commands and Queries

There are two types of SCPI commands: queries which end with
question mark (?), and commands which do not. Only queries
expect a response.

Commands and queries are discussed below.

NOTE For more information about SCPI, please consult Chapter 1
“Introduction to Programming”.

The SCPI commands specific to OTDRs are listed in Chapter 2
“Specific Commands”, and explained in subsequent chapters.

Commands

Commands must be followed by a newline ("\n" ).

For example, the abort commandabor  should be formatted as:

sprintf(txtbuffer,"ABOR\n");

There is no response.
152



Programming Examples

How to Send Commands and Queries

ing

an

>.
You can check that a command has been sent correctly by send
the querySYST:ERR?, which returns the contents of the
OTDR’s error queue.

Queries

A query produces a response from the instrument.

If the response is short, you can read the line. Otherwise, you
should read the response one character at a time until you find 
<END> (see Figure 6-3).

Blocks transfer

Larger blocks of data are given asBinary Blocks, preceded by
“#HLenNumbytes”, terminated by <END>;HLen represents the
length of the Numbytes block. For example: #16TRACES<END

    sprintf(txtbuffer,"*IDN?\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
    // read response
    ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);

Figure 6-3 Query - example
153



Programming Examples

Common Tasks

re

ut

ds,
For more examples, see Figure 6-4 and “How to Upload a Bellco
File from the current trace” on page 156

6.5 Common Tasks

This section gives some programming examples for common
OTDR tasks. The examples do not cover all SCPI commands, b
are just a general example.

For a full program containing some of these, and other, comman
see “SCPI data transfer between PC and OTDR” on page 159.

How to Initialize the Instrument

1 Connect to the instrument,

See “How to Connect your OTDR to a PC” on page 147.

    // read the trace data ...
    sprintf(txtbuffer,"TRACE:DATA?\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

    // now comes the data: e.g. #48000.... which means:
// | 4 digits following to tell the number

    //                                 of bytes
// |||| 8000 bytes following, containing

    //                                 4000 trace pts
    cnt=0;
    while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0);  // read "#"
    ReadFile(hSerial, header, 1, &cnt, 0);  // read number of digits
    header[1]=0;
    numbytes = atoi(header);
    ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
    header[cnt] = 0;
    numbytes = atoi(header);
    printf("Reading %d points of trace data ...\n", numbytes/2);
            // 1 point = 16 bit unsigned short

ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
    ReadFile(hSerial, header, 15, &cnt, 0);          // read rest:
<END>\n

Figure 6-4 Blocks transfer - example
154



Programming Examples

Common Tasks

m,
2 Clear the error queue.

Send the command*CLS.

3 Check the instrument id

Send the query*IDN?

For example, sending: *idn?  may return:

HP E6000A Mini Optical Time Domain
Reflectometer
Mainframe: 3502G00056 , Module: 3525G00056
SW-Rev.: 1.00<END>

How to Set Up an OTDR Measurement

4 Set up the measurement parameters.

For example, send the following commands:

source:puls:width 3us
source:range:start 0km
source:range:span 60km
source:wav 1310nm
sens:det:func:opt dyn
sens:aver:coun 180
sens:fib:refr 1.462

This sets a pulsewidth of 3 us, a start and span of 0 km - 60 k
a wavelength of 1310nm, dynamic optimize modem an
averaging time of 3 minutes, and a refractive index of 1.462

5 Select the OTDR screen (Mini-OTDR and Rack OTDR only):

Send the commandSENS:DET:MODE OTDR.

How to Run a Measurement

6 Start the measurement

Send the commandinit .

You can stop the measurement with theabor  command, or wait
until the Averaging Time is complete,

7 Check whether the measurement is still running
155



Programming Examples

Common Tasks

ults
*opc? returns0 if the measurement is still running,and 1 if
the measurement is finished.

The measurement has now stopped, and you can check the res

How to Scan a Trace

8 Send the commandprog:expl:exec "scan"

When the scan is complete,*opc?  returns 1 (see note 7,
above).

How to Process a Trace

9 Print the Trace

Send the commandhcop:item:all

10 Save the Trace

Send the commandmmem:stor:trac "newtrace.sor"

How to Upload a Bellcore File from the current trace

11 Upload the file from the OTDR

Send the queryMMEM:LOAD:FILE? ""

12 Read in the first character

This character should be a hash (#).

13 Read in the next character

This character should be an integer,m, giving the number of
digits you should now read.

14 Read in the nextm characters

This series of characters should form an integer,n, giving the
number of data bytes that follow.

15 Read in the nextn data bytes, and store them.

16 Read until the final<END>.
156



Programming Examples

Advanced Topics

at
17 Check that there have been no errors.

6.6 Advanced Topics

This section gives some further examples of SCPI commands th
you may wish to use when programming your OTDR.

How to Download a Bellcore File

1 Download a specified file to the OTDR

Send the command

mmem:save:file "newtrace.sor" #Asss....

Where#Assss... is a binary block containing the Bellcore
file.

    // now comes the data: e.g. #48000.... which means:
// | 4 digits following to tell the number

    //                                 of bytes
// |||| 8000 bytes following, containing

    //                                 4000 trace pts
    cnt=0;
    while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0);  // read "#"
    ReadFile(hSerial, header, 1, &cnt, 0);  // read number of digits
    header[1]=0;
    numbytes = atoi(header);
    ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
    header[cnt] = 0;
    numbytes = atoi(header);
    printf("Reading %d points of trace data ...\n", numbytes/2);
            // 1 point = 16 bit unsigned short

ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
    ReadFile(hSerial, header, 15, &cnt, 0);          // read rest:
<END>\n

    // write the data to the console ...
    for(unsigned int i=0; i<numbytes/2; i++)
        {
        printf("idx: %d, value: %d\n", i, tracebuf[i]);
        }

Figure 6-5 Uploading a Bellcore file - example
157



Programming Examples

Advanced Topics

 on

or
How to Use the Power Meter and Source Mode

These examples show you how to user the Power Meter options
the Mini-OTDR and Rack OTDR. They are not valid for the 8147A
Mainframe OTDR.

1 Select source mode

Send the commandSENS:DET:MODE SOUR.

2 Reset the reference power

Send the commandSENS:POW:REF 0.

3 Set the power meter display to absolute power level readout

Send the commandSENS:POW:REF:STAT 0.

4 Select Watts (W) as the readout unit.

Send the commandSENS:POW:UNIT W

5 Start a measurement on the power meter.

Send the commandINIT2:CONT 0 .

6 Read the detected wavelength and power.

Send the queriesSENS:POW:WAV? andREAD:POW?

These return, for example,1310NM<END> and
1.07898NW<END>.

These queries respectively return the current power meter
wavelength (in nm), and the current power reading (in dBm, W, 
dB).

How to Store Traces on Other Devices

1 Select a new storage device.

For example, send the commandMMEM:MSIS FLOP to
change to the floppy disk drive.

2 Check that the device has been changed correctly.

Send the queryMMEM:MSIS?

You should receive a string corresponding to the device that you
have just set, in this caseFLOP.

3 Check that there is enough free disk space.
158



Programming Examples

SCPI data transfer between PC and OTDR

C.

an
Send the queryMMEM:FREE?.

You receive a response giving 2 values. The first value gives the
amount of free space.

4 Reclaim extra disk space, if required (Mini-OTDR and Rack
OTDR only).

Send the commandMMEM:FREE.

NOTE MMEM:FREEreplaces internal disk space only (not, for example, for the
Flash Disk or Floppy disk).

6.7 SCPI data transfer between PC and OTDR

This C program transfers data between the Mini-OTDR and a P

Before you run this program connect the PC and the OTDR with
RS232 cable (see theMini-OTDR User’s Guide)

The program sets the measurement parameters, starts the
measurement, stops the measurement 15 seconds later, and
transfers the trace data to the PC.

NOTE TRAC:DATA? and TRAC:DATA:LINE?  returns blocks of unsigned
short (16-bit) data in Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola) use big
endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the low and
high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.
159



Programming Examples

SCPI data transfer between PC and OTDR
/* ------------------------------------------------------------------------------------
*  Module:        demoapp.cpp                                                         *
*  Description:   application to demonstrate a SCPI data transfer between PC<->OTDR   *
*  Copyright:     12/02/1996 Hewlett-Packard GmbH                                     *
*  NOTE:          This application is not supported by HP! HP cannot be held          *
*                 responsible for any problems/damages caused by this program!        *
*                                                                                     *
*  Compile:       Compile this program as a 32Bit Console Application under Win95/NT. *
*                 We recommend a struct member byte alignment of 2 bytes.             *
* -----------------------------------------------------------------------------------*/

#include <windows.h>
#include <stdio.h>
#include <string.h>

#define INTERFACE "COM1"
#define MAXNUMBYTES 255
#define TRLEN 16512

HANDLE InitSerial( int baudrate )
    {
    static HANDLE hSer = CreateFile(
                         INTERFACE,                    // use COM1 / Serial A
                         GENERIC_READ | GENERIC_WRITE, // open for read & write access
                         0, NULL,
                         OPEN_EXISTING,                // well, hopefully ... :-)
                         0, NULL );

    if(!hSer)
        {
        return NULL;
        }

    // configure the interface ...
    DCB dcb;
    COMMTIMEOUTS commtimeout;
    GetCommTimeouts(hSer, &commtimeout);
    commtimeout.ReadIntervalTimeout = 3000;
    commtimeout.ReadTotalTimeoutMultiplier = 200;
    commtimeout.WriteTotalTimeoutMultiplier = 200;
    commtimeout.WriteTotalTimeoutConstant = 3000;
    GetCommState(hSer, &dcb);
    dcb.DCBlength = sizeof(dcb);
    dcb.BaudRate = baudrate;
    dcb.ByteSize = 8;
    dcb.Parity = 0;
    dcb.StopBits = 1;
    dcb.fBinary =  1;
    dcb.fParity = 0 ;
    dcb.fOutX = 0;
    dcb.fInX = 0;
    dcb.fDtrControl = DTR_CONTROL_DISABLE;
    dcb.fRtsControl = RTS_CONTROL_HANDSHAKE;   // RTS flow control

    SetCommState(hSer, &dcb);
    SetCommTimeouts(hSer, &commtimeout);
    ClearCommBreak(hSer);
    PurgeComm(hSer, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
160



Programming Examples

SCPI data transfer between PC and OTDR
    return hSer;
    }

void main(int argc, char** argv)
    {
    int baudrate=19200;              // default value for baudrate
    HANDLE hSerial=NULL;             // windows handle for interface
    char txtbuffer[MAXNUMBYTES+1];   // ascii buffer for commands/ascii queries
    char header[16];                 // buffer to read the binary header into
    unsigned short tracebuf[TRLEN];  // binary buffer for trac:data? query
    unsigned long cnt;               // number of bytes actually written/read
    unsigned long numbytes;          // number of bytes to write/read

    // if argc>1, take argv[1] as the current baudrate
    if(argc>1)
        {
        baudrate = atoi(argv[1]);
        if(baudrate < 1200 || baudrate > 115200) baudrate = 19200;
        }

    // initialize the interface ...
    printf("Setting baudrate to %d!\n", baudrate);
    hSerial = InitSerial(baudrate);

    if(!hSerial)
        {
        printf("Failed to open %s, exiting!\n", INTERFACE);
        return;
        }

    // now start communicating ...
    sprintf(txtbuffer,"*CLS\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
    sprintf(txtbuffer,"*IDN?\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
    ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
    if(cnt == 0 || strlen(txtbuffer) == 0)
        {
        printf("SCPI query failed, exiting!\n");
        CloseHandle(hSerial);
        return;
        }

    printf("Connected to: %s\n", txtbuffer);

    // setting measurement parameters ...
    sprintf(txtbuffer,"SOURCE:RANGE:START 0\n");          // measurement start
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
    sprintf(txtbuffer,"SOURCE:RANGE:SPAN 10km\n");        // measurement span
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
    sprintf(txtbuffer,"SOURCE:PULSE:WIDTH 100ns\n");      // pulsewidth
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
    sprintf(txtbuffer,"SOURCE:WAVELENGTH 1310nm\n");      // wavelength
    numbytes = strlen(txtbuffer);
161



Programming Examples

SCPI data transfer between PC and OTDR
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

    // start the measurement ...
    printf("Starting measurement ...\n");
    sprintf(txtbuffer,"INIT\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

    Sleep(15000); // give it 10s to run + 5s for init ...

    // stop the measurement ...
    printf("Stopping measurement ...\n");
    sprintf(txtbuffer,"ABORT\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
    Sleep(1000); // wait a little for things to settle ...

    // read the trace data ...
    sprintf(txtbuffer,"TRACE:DATA?\n");
    numbytes = strlen(txtbuffer);
    WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

    // now comes the data: e.g. #48000.... which means:
    //                           | 4 digits following to tell the number of bytes
    //                            |||| 8000 bytes following, containing 4000 trace pts
    cnt=0;
    while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0);  // read "#"
    ReadFile(hSerial, header, 1, &cnt, 0);  // read number of digits
    header[1]=0;
    numbytes = atoi(header);
    ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
    header[cnt] = 0;
    numbytes = atoi(header);
    printf("Reading %d points of trace data ...\n", numbytes/2);
    ReadFile(hSerial, tracebuf, numbytes, &cnt, 0);  // read trace data
    ReadFile(hSerial, header, 15, &cnt, 0);          // read rest: <END>\n

    // write the data to the console ...
    for(unsigned int i=0; i<numbytes/2; i++)
        {
        printf("idx: %d, value: %d\n", i, tracebuf[i]);
        }

    // close the interface
    CloseHandle(hSerial);
    return;
    }
162



A

A The VEE Driver



164

The VEE Driver

This appendix gives you extra information about using HP OTDRs
with the HP VEE VXI-plug&play driver.

You will find the driver on the update CD undervxipnp/ .



The VEE Driver

What is HP VEE ?

s

l

,

A.1 What is HP VEE ?

Hewlett-Packard Visual Engineering Environment (HP VEE) is a
visual programming language optimized for instrument control
applications. To develop programs in HP VEE, you connect
graphical ‘objects’ instead of writing lines of code. These program
resemble easy-to-understand block diagrams with lines.

HP VEE allows you to leverage your investment in textual
languages by integrating with languages such as C, C++, Visua
Basic, FORTRAN, Pascal, and HP BASIC.

HP VEE controls HP-IB, VXI, Serial, GPIO, PC Plug-in, and LAN
instruments directly over the interfaces or by using instrument
drivers.

HP VEE supports VXIplug&play drivers in the WIN, WIN95,
WINNT, and HP-UX frameworks. In addition, versions 3.2 and
above of HP VEE support the graphical Function Panel interface
providing a function tree of the hierarchy of the driver.

NOTE This appendix assumes that you are using Windows 95. If you are using
Windows NT, please replace every reference towin95  with winnt .

Windows 95 and Windows NT are registered trademarks of Microsoft
corporation.

HP VEE automatically calls theinitialize andclose functions to
perform automatic error checking.

Using the RS232 port

HP VEE supports interfacing with an instrument from the RS232
port. Before you can do this, you must do the following:

1 Select INSTRUMENTMANAGER from the IO menu.

2 Double-click on theAdd button to bring up the Device
165



The VEE Driver

How to Install HP VEE

.

l

fy

r

ts
ns
Configuration screen.

3 Enter the following information:

 • Name: choose any name to describe the instrument.

• Interface : HP-IB (even if you want to use the serial port)

 • Address : key in any number (it does not matter which
number you enter as you will only be using one of the seria
ports).

 • Gateway : This host .

4 PressAdvanced I/O Config , and select the hpotdr
plug&play Driver from a drop down list.

NOTE If you do not see this driver in the list, it has not been installed properly.

5 If you are planning to use the COMx port in the machine, speci
the address of the instrument asASRLx.

6 Select whetherReset  andInstrument Name Check
should be performed whenever VEE opens the instrument fo
interaction.’

7 Return to the Instrument Manager screen, and selectOKto save
the configuration.

A.2 How to Install HP VEE

The HP VEE VxIplug&play driver comes as a self-extracting
archive with an installation wizard. The installation wizard extrac
all the files to preset destinations, asking you appropriate questio
as it does so.

You install HP VEE by running the executableOTDR.EXE. When
you runOTDR.EXE, you see a message telling you that the HP
OTDR Instrument Driver will be installed.
166



The VEE Driver

How to Install HP VEE
1 PressYes to continue.

You see a VXIplug&play window, and a message telling you
that you are not an administrator (Figure A-1)

2 Ignore this message, and pressYes to continue.

NOTE If HP VEE is already installed on your system, you see a message asking
you if you want to uninstall the old version.

PressYes, if required, then wait until you see a message telling you that
the uninstall has been successful. Then pressOK to continue.

You see a Welcome message, advising you to close the
programs that you have running.

3 Close these programs and pressNext>  to continue.

Figure A-1 VXI plug&play window
167



The VEE Driver

How to Install HP VEE

A-

an
NOTE If you do not have VISA installed, you see a message advising you to
install VISA.

PressCancel  to temporarily exit this installation procedure; install
VISA on your PC, then run OTDR.EXE again.

You see a window showing you what you can install (Figure 
2).

4 Select any or all ofRead Me , Help  andUninstall , then
press Next> to continue.

You see a window asking you in which folder you want to
install the files.

5 Select the default,VXIPNP, or choose a folder that you want.
PressNext>  to continue.

You see a message saying that setup is complete, giving you
option to view the Readme file.

6 PressFinish to complete installation, viewing the Readme file

Figure A-2 HP VEE - Install options
168



The VEE Driver

Features of the HP OTDR VEE Driver

oft

.

if you wish.

A.3 Features of the HP OTDR VEE Driver

The HP OTDR VEE driver conforms to all aspects of the
VXI plug&play driver standard which apply to conventional rack
and stack instruments.

The following features are available:

 • The VEE driver conforms with the VXIplug&play standard.

There is one exception as the OTDR driver does not have a s
front panel or a knowledge-based file.

 • The VEE driver is built on top of VISA, and uses the services
provided.

VISA supports GP-IB and VXI protocols. The driver can be
used with any GP-IB card for which the manufacturer has
provided a VISA DLL.

 • The VEE driver includes a Function Panel (.FP) file.

The .FP file allows the driver to be used with visual
programming environments such as HP-VEE, LabWindows,
and LabVIEW.

 • The VEE driver includes a comprehensive on-line help file
which complements the instrument manual.

The help file contains application programming examples, a
cross-reference between instrument commands and driver
functions, and detailed documentation of each function with
examples.

 • The VEE driver includes a source, so that the driver can be
modified if desired.

The source conforms to VXIplug&play standards. You should
only modify the driver if you are familiar with these standards
169



The VEE Driver

Directory Structure

e

r

 is
rst
 • The VEE driver includes a Visual Basic (.BAS) file which
contains the function calls in Visual Basic syntax, and allows th
driver functions to be called from Visual Basic.

You should only use Visual Basic with this driver if you are
familiar with C/C++ function declarations. You must take
particular care when working with C/C++ pointers.

A.4 Directory Structure

The setup program which installs the HP OTDR instrument drive
creates theVXIPNP directory if it does not already exist.
Windows 95 files are inVXIPNP\WIN95 ; Windows NT files are in
VXIPNP\WINNT.

A.5 Opening an Instrument Session

To control an instrument from a program, you must open a
communication path between the computer/controller and the
instrument. This path is known as an instrument session, and is
opened with the function

ViStatus hpotdr_init( ViRsrc InstrDesc,
ViBoolean id_query, ViBoolean reset,
ViPSession instrumentHandle );

Instruments are assigned a handle when the instrument session
opened. The handle, which is a pointer to the instrument, is the fi
parameter passed in all subsequent calls to driver functions.

The parameters of the functionhpotdr_init  include:

 • ViRsrc InstrDesc : the address of the instrument
170



The VEE Driver

Closing an Instrument Session

s

e

.
tem
 • ViBoolean id_query : a Boolean flag which indicates if in-
system verification should be performed.
PassingVI_TRUE (1) will perform an in-system verification;
passingVI_FALSE  (0) will not.
If you setid_query to false, you can use the generic function
of the instrument driver with other instruments.

 • ViBoolean reset : a Boolean flag which indicates if the
instrument should be reset when it is opened.
PassingVI_TRUE (1) will perform a reset when the session is
opened; passingVI_FALSE  (0) will not perform a reset,

 • ViPSession instrumentHandle : a pointer to an
instrument session.
InstrumentHandle  is the handle which addresses the
instrument, and is the first parameter passed in all driver
functions.

Successful completion of this function returnsVI_SUCCESS

A.6 Closing an Instrument Session

Sessions (instrumentHandle) opened with thehpotdr_init()
function are closed with the function:

hpotdr_close( ViSession instrumentHandle);

When no further communication with an instrument is required, th
session must be explicitly closed (hpotdr_close()  function).

VISA does not remove sessions unless they are explicitly closed
Closing the instrument session frees all data structures and sys
resources allocated to that session.
171



The VEE Driver

VISA Data Types and Selected Constant Definitions

ts.

ort
A.7 VISA Data Types and Selected Constant
Definitions

The driver functions use VISA data types. VISA data types are
identified by theVi  prefix in the data type name (for example,
ViInt16 , ViUInt16 , ViChar ).

The filevisatype.h  contains a complete listing of the VISA
data types, function call casts and some of the common constan

NOTE You can find a partial list of the type definitions and constant definitions
for the visatype.h in the HP OTDR Instrument Driver Online Help.

A.8 Error Handling

Events and errors within a instrument control program can be
detected by polling (querying) the instrument. Polling is used in
application development environments (ADEs) that do not supp
asynchronous activities where callbacks can be used.

Programs can set up and use polling as shown below.

1 Declare a variable to contain the function completion code.

ViStatus errStatus;

Every driver function returns the completion codeViStatus .

If the function executes with no I/O errors, driver errors, or
instrument errors,ViStatus  is 0 (VI_SUCCESS).

If an error occurs,ViStatus  is a negative error code.

Warnings are positive error codes, and indicate the operation
succeeded but special conditions exist.

2 Enable automatic instrument error checking following each
function call.
172



The VEE Driver

Introduction to Programming

or
d

nt

or
hpotdr_errorQueryDetect
(instrumentHandle, VI_TRUE);

When enabled, the driver queries the instrument for an error
condition before returning from the function.

If an error occurred,errStatus  (Step 1) will contain a code
indicating that an error was detected
(hpotdr_INSTR_ERROR_DETECTED).

3 Check for an error (or event) after each function.

errStatus = hpotdr_cmd(instrumentHandle,
"MEAS:FREQ");

check(instrumentHandle, errStatus);

After the function executes,errStatus  contains the
completion code.

The completion code and instrument ID are passed to an err
checking routine. In the above statement, the routine is calle
'check'.

4 Create a routine to respond to the error or event.

A.9 Introduction to Programming

Selecting Functions

The functions in each category are identified below.

Application Functions

These functions do application level tasks. They are designed to
allow quick and easy access to common instrument measureme
sequences.

Application functions are instrument-specific, and can be used f
common instrument measurement tasks.
173



The VEE Driver

Introduction to Programming

,

or

n

Subsystem Functions

These functions combine multiple SCPI commands into a single
functional operation. They are designed to allow quick and easy
access to common instrument command sequences.

Subsystem functions are instrument-specific, and cab be used f
functional tasks.

Passthrough Functions

Passthrough functions pass SCPI commands directly to the
instrument. These functions are used when there is not a driver
function available to set or perform a particular operation.

Utility Functions

Utility functions perform a variety of standard tasks.

Example Programs

See the Online Help and Chapter 6 “Programming Examples”.

LabView

The 32-bit HP OTDR driver can be used with LabVIEW 4.0 and
above. LabVIEW 4.0 is a 32-bit version of LabVIEW which runs
on Windows 95 and Windows NT.

To access the functions of the HP OTDR instrument driver from
within LabVIEW 4.0, select FILE from the main menu, then select
the CONVERT CVI FP FILE submenu item.

In the file selection dialog box which appears, selecthpotdr.fp
and click on theOK button.

LabVIEW will create a series of VI's, one per driver function. It
will create a file called hpotdr.llb  which contains these VI's.
This library of VI's can then be accessed like any other VI library i
LabVIEW.
174



The VEE Driver

VISA-specific information

d
h

 and

ters.
NOTE You must use the 32-bit version of the HP OTDR driver with LabVIEW
4.0.

NOTE LabView is a trademark of National Instruments Corporation

LabWindows

The 32-bit HP OTDR driver can be used with LabWindows 4.0 an
above. LabWindows 4.0 is a 32-bit version of LabWindows whic
runs on Windows 95 and Windows NT.

To access the functions of the HP OTDR driver from within
LabWindows, select INSTRUMENT from the main menu, and then
select the LOAD... submenu item.

In the file selection dialog box which appears, selecthpotdr.fp
and click on theOK button. LabWindows loads the function panel
and instrument driver.

The driver now appears as a selection on the Instrument menu,
can be treated like any LabWindows driver.

NOTE LabWindows is a trademark of National Instruments Corporation

A.10 VISA-specific information

The following information is useful if you are using the driver with
a version of VISA.

Instrument Addresses

When you are using HP VXIplug&play instrument drivers, you
should enter the instrument addresses using only upper case let
This is to ensure maximum portability.
175



The VEE Driver

Using the HP OTDR VEE Driver in Application Development
Environments

ls

n

For example, useGPIB0::22  rather thangpib0::22 .

Callbacks

Callbacks are not supported by this driver.

A.11 Using the HP OTDR VEE Driver in
Application Development Environments

The sections contains suggestions as to how you can use
hpotdr_32.dll  within various application development
environments.

Microsoft Visual C++ 4.0 (or higher) and Borland
C++ 4.5 (or higher)

Please refer to your Microsoft Visual C++ or Borland C++ manua
for information on linking and calling DLLS.

The driver uses Pascal calling conventions.

You should rebuild the driver DLL in a different directory to the
directory in which the driver was installed. This helps you to
differentiate the changes.

Microsoft Visual Basic 4.0 (or higher)

Please refer to your Microsoft Visual Basic manual for informatio
on calling DLLs.

The BASIC include file ishpotdr.bas . You can find this file in
the directory~vxipnp\win95\include , where~ is the
directory in the VXIPNP variable.

By default,~ is equivalent toC:\ . This means that the file is in
C:\vxipnp\win95\include .
176



The VEE Driver

Using the HP OTDR VEE Driver in Application Development
Environments

E

,

er,

-

e

You may also need to include the filevisa.bas . visa.bas  is
provided with your VISA DLL.

HP VEE 3.2 (or higher)

Your copy of HP VEE for Windows contains a document titled
Using VXIplug&play drivers with HP VEE for Windows. This
document contains the detailed information you need for HP VE
applications.

LabWindows CVI/ (R) 4.0 (or higher)

The HP OTDR VEE driver is supplied as both a source code file
and as a Dynamic Link Library (.DLL) file.

There are several advantages to using the .DLL form of the driv
including those listed below:

 • transportability across different computer platforms,

 • a higher level of support for the compiled driver from Hewlett
Packard,

 • a faster load time for your project.

LabWindows/CVI (R) will attempt by default to load the source
version of the instrument driver. To load the DLL, you must includ
the fileHPOTDR.FPin your project.HPOTDR.FPcan be found in
the directoryvxipnp\win95\hpotdr .

Do not includeHPOTDR.C in your project.

You must provide an include file forHPOTDR.H. You do this by
ensuring that the directory~vxipnp\win95\include is added
to the include paths (CVI Project Option menu).
~ is the directory in the VXIPNP variable. By default,~ is
equivalent toC:\ . This means that the file is in
C:\vxipnp\win95\include .
177



The VEE Driver

Online information
A.12 Online information

The latest copy of this driver and other HP VXIplug&play drivers
can be obtained via anonymous ftp from
fcext3.external.hp.com  from the directory
~dist/mxd/vxipnp/pnpdriver.lis .

It may also be obtained on the World Wide Web from

ftp://fcext3.external.hp.com/dist/mxd/
vxipnp/pnpdriver.lis .

The HP OTDR driver is located in a self-extracting archive file
calledOTDR.EXE.

If you do not have ftp or web access, please contact your HP
supplier, or use the version ofOTDR.EXE on your installation CD.
178



Index
A

Abort
measurement.......79
printing .............130

Add landmark .........112
Around marker........127
Attenuation.............86
Automatic measurement

mode ..............92
Average

number of averages90
Average mode.........91
Averaging time........89

B

Battery
current ..............58
power ...............57
power capacity....57

Baud rate................62
Bellcore file

download...........157
upload ..............156

Bellcore revision number
143

Binary block ...........18,
153

Blocks transfer........153
Brightness..............123

C

Cable configuration..147
CALCulate subsystem83
Clear

event registers.....45

Close
all traces............117
trace.................117

Color .....................125
Command messages.17
Command syntax.....17
Commands.............152
Comment ...............126
Common commands.20
Common status registers22
Condition register....56, 59
Continue mode........91
Continuous measurement80
Contrast .................123,

124
Copy

file ...................138
Current ..................58
Current trace...........117,

118
CW mode...............91

D

Data bits.................63
Data points.............118,

119
Data transfer...........159
Data types..............18
Date ......................69
Defaults .................47
Delete

all traces............117
file ...................138
landmark ...........113
trace.................117

Device ...................158
change..............141
format ...............139

query ................141
Directory

change..............137
contents.............137
create ...............140
query ................138

Display
brightness..........123
contrast.............123,

124
LCD ................124

Display Operations...123
DISPlay Subsystem..123
Dotted line..............125,

126
Download file .........142,

157
Dynamic optimization92,

93

E

Empty traces...........118
End Threshold.........85
Error queue.............19, 70
Event register

clear .................45
operation ...........56
operation enable...56, 57
questionable.......59
questionable enable59,

60
Event Status Enable..46
Event Status Register47
Event Table............115

lock .................115
print .................133,

134
179



Index
F

Factory default....... 47
Fiber

type ................ 95
Fiber Break Locator 93
File

copy ................ 138
delete .............. 138
download.......... 142
upload ............. 140

File operations........ 137
Flash disk.............. 141

format .............. 139
Floppy .................. 141

format .............. 139
Format

device.............. 139
Free space............. 139

reclaim............. 139
Frequency............. 96
Front connector Return Loss

112
Full trace............... 127

G

GP/IB address........ 61, 62
Grid

print ................ 135

H

Hard disk .............. 141
HCOPy subsystem.. 130
Help page.............. 70
Horizontal offset..... 101

I

Identification.......... 48
IEEE-Common Commands

45
Initialize ................ 154
Input frequency...... 96
Input queue............ 19
Installed options..... 50
Instrument Behaviour Set-

tings .............. 61
Instrument Configuration

148
example ........... 149

Instrument setting
load ................ 73
read ................ 73
save ................ 53
set .................. 73

Interface
behaviour settings61

K

Keyboard .............. 81
Keystroke

return last keystroke72
simulate keystroke71

L

Landmark
add ................. 112
delete .............. 113

Laser
state ................ 104
switch on .......... 104

LCD ..................... 124

Learn .................... 48
Length unit ............ 106
Line

store................ 114
Linearity optimization92,

93
Linestyle ............... 125,

126
Load file ............... 140
Lock

event table........ 115
Loss ..................... 86
LSA Attenuation..... 86

M

M2kHz mode......... 91
Marker

activate ............ 103
disable ............. 103
position ............ 102
state ................ 103

Measurement......... 155
start ................ 80
stop ................ 79

Measurement Functions89
Measurement mode. 91

automatic.......... 92
Message exchange.. 18
MMEMory subsystem137
Modulation frequency

internal source.... 100
visual fault finder 100,

101
Module

fiber type .......... 95
Multimode fiber...... 95
180



Index
N

Non-Reflective Threshold85
Number of averages.90

O

Operating time........58
Operation Complete.49
Operation condition register

56
Operation enable......56, 57
Operation event register56
Optimization mode...92, 93
Options ..................50
OTDR

initialize ............154
OTDR mode...........93
OTDR screen..........93
Output queue..........19

P

Pace......................65, 66
Paper size...............136
Parameter window

print .................132,
133

Parity checking........67, 68
Parity type..............66, 67
PC

connect with OTDR147
PCMCIA ................141

format ...............139
Power ....................57

capacity.............57
current ..............58

Power Meter...........158

continuous measurement
80

start measurement.80
Power meter

absolute display...97
continuous measurement

80
current value.......79, 82
input frequency....96
reference value....96, 97
relative display....97
units .................96, 98
wavelength.........98, 99

Print ......................156
abort ................130
device...............130,

131
event table.........133,

134
grid ..................135
paper size..........136
parameter window132,

133
print all .............132
print all selected...131
trace.................134,

135
Print operations.......130
Printer ...................130,

131
PROGram subsystem83
Pulsewidth..............104,

105
lower limit .........105
upper limit .........105

Q

Queries..................153
Questionable enable.59, 60

Questionable event register
59

R

Realtime mode........91
Recall saved settings.51
Reclaim free space...139
Reflectance.............87, 88
Reflection Height.....88
Reflection parameter88
Reflective Threshold85
Refractive index......94
Reset.....................52
Reset default...........47
Resolution optimization92,

93
Return Loss

front connector....112
total .................116

Return Loss mode....91
Root layer commands79
RS232 ...................68,

147
RS485 ...................68

S

Sample distance.......94
Save......................53,

156
setting ..............142
trace.................142

Saved settings.........51
Scale

x-scale ..............128
y-scale ..............129

Scan Trace..............84,
181



Index
156
Scatter coefficient... 95
SCPI revision......... 75
Self-test ................ 54
SENSe subsystem... 89
Serial 2

configuration ..... 68
send command... 64
send query........ 64
send/receive data. 61

Serial interface
baud rate.......... 62
data bits ........... 63
pace ................ 65, 66
parity checking... 67, 68
parity type......... 66, 67
stop bits ........... 68, 69

Setting
save ................ 142

Settings file
load ................ 140

Signal generation.... 100
Single-mode fiber... 95
Solid line ............... 125,

126
Source Mode.......... 93,

158
SOURce subsystem. 100
Span..................... 106,

107
Specific Command Summary

33, ............... 34
Splice loss............. 87
Start ..................... 107

laser ................ 104
measurement...... 80
power meter measurement

80
Status Byte............ 54
Status Command Summary

27
Status Information... 22
Status Registers...... 22
Status Reporting..... 56
STATus subsystem. 56
Stop

laser ................ 104
measurement...... 79

Stop bits................ 68, 69
Subsystem

CALCulate ........ 83
DISPlay ........... 123
HCOPy ............ 130
MMEMory ........ 137
PROGram......... 83
SENSe............. 89
SOURce........... 100
STATus ........... 56
SYSTem .......... 61
TRACe ............ 110

SYSTem subsystem. 61

T

Terminal program... 150
Terminate

current task....... 85
Test ...................... 54
Text

enter................ 81
Threshold.............. 85
Time .................... 74

since power on... 74
Total Optical Return Loss

116
Trace

close ............... 117
close all............ 117
color ............... 125

comment .......... 126
current trace...... 117,

118
data array.......... 111
data points........ 118,

119
empty traces...... 118
linestyle ........... 125,

126
load file ............ 140
loaded.............. 110
name ............... 142
print ................ 134,

135, ... 156
rename............. 141
save ................ 142,

156
Trace array............ 18
Trace Checker........ 84

limits ............... 83, 84
Trace Checker Table111

current state....... 112
Trace Data Access... 75,

110
TRACe subsystem.. 110
Traffic detection..... 82
Transfer

blocks .............. 153

U

Units .................... 17,
106

Upload file ............ 140,
156

Uptime.................. 74
182



Index
V

Visual Fault Finder
modulation frequency

100, ...101

W

Wait ......................55
Wavelength............108

available............109
power meter.......98, 99

X

x-scale ...................128

Y

y-scale ...................129

Z

Zoom
around marker.....127
183


	Notices
	Subject Matter
	Printing History
	Warranty
	Limitation of Warranty
	Exclusive Remedies
	Assistance
	Certification
	ISO 9001 Certification
	In this Manual
	The Structure of this Manual
	Conventions used in this Manual
	Related Manuals
	NOTE Please note that these User Guides no longer contain programming information, and must now b...
	1 Introduction to Programming
	2 Specific Commands
	3 Instrument Setup and Status
	4 Operations on Traces and Measurements
	5 Mass Storage, Display, and Print Functions
	6 Programming Examples
	A The VEE Driver


	Introduction to Programming
	1.1 Command Messages
	Units
	Trace Array
	Data
	Message Exchange
	The Input Queue
	Clearing the Input Queue

	The Output Queue
	The Error Queue

	1.2 Common Commands
	Common Command Summary
	Table 1-1 Common Command Summary

	NOTE These commands are described in more detail in “IEEE-Common Commands” on page�45
	Common Status Information

	Figure 1-1 Common Status Registers

	1.3 HP OTDR Status Model
	Annotations
	Standard Event Status Register
	Operation/Questionable Status
	Operation Status
	Questionable Status
	Status Command Summary
	Mini-OTDR and Rack OTDR Bit Table
	Bit 19
	Module State
	Bits 18 .. 16
	Unused
	Bits 15�..�8
	Submodule Error
	Bits 7�..�0
	Module Error
	<----------------- Error code ----------------->
	<----------------- Error code ----------------->
	Mainframe OTDR Bit Table

	Selftest ERROR
	Module Init failed
	IBI-test failed
	FATAL ST-Error
	ST non- fatal Error
	analog summ
	digital summ
	MOD Temp.
	LAS Temp.
	APD-L Temp.
	APD-H Temp.
	APD- HV
	RCV- OFFS
	OFFS HILIN
	OFFS Higain
	OFFS Logain
	RMS HILIN
	RMS Higain
	RMS Logain
	not used
	DAP- ALU
	DSP- Code
	CAL- Data
	LOG- Table
	SHOT- RAM
	DAP- RAM
	DSP- RAM
	Other Commands



	Specific Commands
	2.1 Specific Command Summary
	NOTE If a command and a query are both available, the command ends /?.
	So, disp:brig/? means that disp:brig and disp:brig? are both available.
	79
	86
	87
	87
	88
	123
	123
	124
	125
	125
	126
	127
	128
	129
	79
	130
	130
	131
	132
	132
	132
	133
	133
	134
	133
	135
	136
	80
	80
	80
	81
	137
	138
	138
	139
	139
	139
	140
	141
	141
	138
	140
	140
	140
	142
	142
	142
	142
	83
	84
	85
	85
	82
	89
	90
	91
	92
	92
	93
	94
	94
	95
	95
	96
	96
	98
	98
	97
	97
	101
	108
	100
	102
	103
	104
	104
	104
	105
	105
	106
	106
	107
	109
	58
	56
	56
	56
	57
	57
	58
	58
	59
	59
	59
	61
	69
	70
	70
	71
	73
	73
	74
	74
	75
	61
	64
	68
	68
	62
	63
	65
	66
	67
	110
	111
	117
	117
	117
	118
	118
	119
	112
	114
	115
	115
	116
	116
	111
	112
	112
	113
	82
	Table 2-1 Specific Command Summary, continued




	Instrument Setup and Status
	3.1 IEEE-Common Commands
	*CLS
	*ESE
	*ESE?
	*ESR?
	*FTY
	*IDN?
	NOTE The response from *IDN? for Rack OTDRs and Mainframe OTDRs is respectively:
	HP E60xxA Rack Optical Time Domain Reflectometer...
	and

	HP 8147 Optical Time Domain Reflectometer...
	*LRN?
	*OPC?
	*OPT?
	NOTE The second and third arguments for the Rack OTDR (FLOPPY and COLOR) are included for the sak...
	The Rack OTDR has no floppy option, and is always configured as a color unit.
	NOTE In this release of the Mini-OTDR and Rack OTDR, the fourth argument (EXTFLASH) will always b...
	E4310A example:
	*RCL
	*RST
	*SAV
	*STB?
	*TST?
	*WAI



	3.2 Status Reporting – The STATus Subsystem
	STATus:OPERation[:EVENt]?
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle
	STATus:OPERation:ENABle?
	STATus:POWer:ACDC?
	STATus:POWer:CAPacity?
	STATus:POWer:CURRent?
	NOTE If the battery is discharging, the returned value will be negative.
	If the battery is charging, the returned value will be positive.
	STATus:POWer:REMain?
	STATus:PRESet
	STATus:QUEStionable[:EVENt]?
	STATus:QUEStionable:CONDition?
	STATus:QUEStionable:ENABle
	STATus:QUEStionable:ENABle?


	3.3 Interface/Instrument Behaviour Settings – The SYSTem Subsystem
	SYSTem:BRIDge
	SYSTem:COMMunicate:GPIB[:SELF]:ADDRess
	SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD
	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD?

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	SYSTem:COMMunicate:SERial[:RECeive]:BITS

	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	SYSTem:COMMunicate:SERial[:RECeive]:BITS?
	SYSTem:COMMunicate:SERial:FEED
	SYSTem:COMMunicate:SERial:FEED?
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	You cannot use this command with a Rack OTDR Option 006 (RS485), as this does not have hardware h...
	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	NOTE XONX is only available with the E4310A OTDR. However, for binary disk transfers HARD is reco...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE?

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	NOTE XONX is only available with the E4310A OTDR.
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity [:TYPE]

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity [:TYPE]?

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity: CHECk

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity :CHECk?

	NOTE You can choose Serial 1 or 2 for the Rack OTDR only. If you are using a Rack OTDR, and you d...
	SYSTem:COMMunicate:SERial:PORT?
	SYSTem:COMMunicate:SERial[:RECeive]:SBITS

	NOTE All changes take effect immediately. After this command, you must reconfigure your RS232 to ...
	SYSTem:COMMunicate:SERial[:RECeive]:SBITS?
	SYSTem:DATE
	SYSTem:DATE?
	SYSTem:ERRor?
	SYSTem:HELP?
	SYSTem:KEY
	SYSTem:KEY?
	SYSTem:PRESet
	SYSTem:SET
	SYSTem:SET?
	SYSTem:TIME
	SYSTem:TIME?
	SYSTem:UPTime?
	SYSTem:VERSion?


	Operations on Traces and Measurements
	4.1 Root Layer Commands
	ABORt[1/2]
	NOTE You cannot use a Visual Fault Finder with an E4310A OTDR. You can therefore only use abor wi...
	FETCh[:SCAlar]:POWer[:DC]?

	NOTE If the power meter is not running, a measurement is triggered.
	NOTE If the reference state is absolute, units are dBm or W. If the reference state is relative, ...
	INITiate[1|2][:IMMediate][:ALL]

	NOTE You cannot use a Visual Fault Finder with an E4310A OTDR. You can therefore only use init wi...
	INITiate2[:IMMediate]:CONTinuous
	INITiate2[:IMMediate]:CONTinuous?
	KEYBoard

	NOTE keyb allows you to add text from a terminal (for example, when specifying the name of a file...
	1 Attach your OTDR to a terminal. In this context, a terminal is any PC or palmtop running a term...
	You can attach the terminal using an RS232 cable. For details of attaching an RS232 cable to an O...
	2 Enter keyb from your terminal keyboard.
	3 Enter text as required from your terminal keyboard. All text is treated literally until you ent...
	4 To finish entering text, enter <CTRL>Z from your terminal keyboard.
	For example, after [File]<Save As..>New Name, you see a keyboard on the OTDR screen. Instead of u...
	keyb T1.SOR ^Z

	This is the equivalent of entering T1.SOR from the screen keyboard.
	READ[:SCAlar]:POWer[:DC]?
	NOTE The power meter must be running for this command to be effective
	NOTE If the reference state is absolute, units are dBm or W. If the reference state is relative, ...
	TRAFficdet
	TRAFficdet?





	4.2 Playing With Data – The PROGram and CALCulate Subsystems
	PROGram:EXPLicit:CHECk:LIMit
	NOTE For more information about the Trace Checker limits, please consult the E6000A Mini-OTDR Use...
	PROGram:EXPLicit:CHECk:LIMit?

	NOTE For more information about the Trace Checker limits, please consult the E6000A Mini-OTDR Use...
	PROGram:EXPLicit:EXECute

	NOTE Because this command does not accept character data, you must put quotation marks around the...
	PROGram:EXPLicit:NUMBer
	PROGram:EXPLicit:NUMBer?
	PROGram:EXPLicit:STATe
	PROGram:EXPLicit:STATe?
	CALCulate:MATH:EXPRession:NAME?
	CALCulate:MATH:EXPRession:REFLex?

	NOTE The active marker must be at the position of the Event.
	NOTE The type of measurement given (reflectance or reflection height) depends on how you have con...
	CALCulate:MATH:EXPRession:SPLice?

	NOTE The active marker must be at the position of the splice.
	CALCulate:MATH:EXPRession:TYPE
	CALCulate:MATH:EXPRession:TYPE?


	4.3 Measurement Functions – The SENSe Subsystem
	SENSe:AVERage:COUNt
	SENSe:AVERage:COUNt?
	NOTE If your instrument is configured to measure Number of Averages, rather than Averaging Time, ...
	SENSe:AVERage:COUNt:NUMBer

	NOTE You may only enter 0 or an integer between 14 and 22.
	SENSe:AVERage:COUNt:NUMBer?

	NOTE If your instrument is configured to measure Averaging Time, rather than Number of Averages, ...
	SENSe:DETector[:FUNCtion]
	SENSe:DETector[:FUNCtion]?
	SENSe:DETector[:FUNCtion:]AUTO
	SENSe:DETector[:FUNCtion:]AUTO?
	SENSe:DETector[:FUNCtion:]OPTimize
	SENSe:DETector[:FUNCtion:]OPTimize?
	SENSe:DETector:MODE
	SENSe:DETEctor:MODE?
	SENSe:DETector:SAMPle:DISTance?
	SENSe:FIBer:REFRindex
	SENSe:FIBer:REFRindex?
	SENSe:FIBer:SCATtercoeff
	SENSe:FIBer:SCATtercoeff?
	SENSe:FIBer:TYPE?
	SENSe:POWer:FREQuency?
	SENSe:POWer:REFerence
	SENSe:POWer:REFerence?

	NOTE If the reference state is relative, units are dBm or W. If the reference state is absolute, ...
	SENSe:POWer:REFerence:DISPlay
	SENSe:POWer:REFerence:STATe
	SENSe:POWer:REFerence:STATe?
	SENSe:POWer:UNIT
	SENSe:POWer:UNIT?
	SENSE:POWer:WAVelength
	SENSE:POWer:WAVelength?


	4.4 Signal Generation – The SOURce Subsystem
	[SOURce:]AM[:INTernal]:FREQuency[1]
	[SOURce:]AM[:INTernal]:FREQuency[1]?
	[SOURce:]AM[:INTernal]:FREQuency2
	[SOURce:]AM[:INTernal]:FREQuency2?
	[SOURce:]HOFFset
	NOTE A value of 0 clears the horizontal offset.
	[SOURce:]HOFFset?
	[SOURce:]MARKer1|2|3:POINt

	NOTE The Mini-OTDR and Rack OTDR have no Marker C. MARK3 is therefore only valid for the E4310A.
	[SOURce:]MARKer1|2|3:POINt?

	NOTE The Mini-OTDR and Rack OTDR have no Marker C. MARK3 is therefore only valid for the E4310A.
	[SOURce:]MARKer1|2|3 [:STATe]

	NOTE The Mini-OTDR and Rack OTDR have no Marker C. MARK3 is therefore only valid for the E4310A.
	[SOURce:]MARKer1|2|3[:STATe]?

	NOTE The Mini-OTDR and Rack OTDR have no Marker C. MARK3 is therefore only valid for the E4310A.
	[SOURce:]POWer:STATe[1|2]
	[SOURce:]POWer:STATe[1|2]?
	[SOURce:]PULSe:WIDTh
	[SOURce:]PULSe:WIDTh?
	[SOURce:]PULSe:WIDTh:LLIMit?
	[SOURce:]PULSe:WIDTh:ULIMit?
	[SOURce:]RANGe:LUNit
	[SOURce:]RANGe:LUNit?
	[SOURce:]RANGe:SPAN
	[SOURce:]RANGe:SPAN?
	[SOURce:]RANGe:STARt
	[SOURce:]RANGe:STARt?
	[SOURce:]WAVelength[1|2][:CW]

	NOTE wav2 is only included for the sake of consistency. You will never want to set the Visual Lig...
	NOTE You cannot use a submodule with an E4310A OTDR. You can therefore only use wav with an E4310A.
	[SOURce:]WAVelength[1|2][:CW]?

	NOTE You cannot use a submodule with an E4310A OTDR. You can therefore only use wav with an E4310A.
	[SOURce:]WAVelength[1|2][:CW]:AVAilable?

	NOTE You cannot use a submodule with an E4310A OTDR. You can therefore only use wav:ava? with an ...

	4.5 Trace Data Access – The TRACe Subsystem
	TRACe:CATalog?
	TRACe:DATA?
	NOTE TRAC:DATA? returns blocks of unsigned short (16-bit) data in Intel little endian byte orderi...
	Some processor architectures (such as HP PA-Risc or Motorola) use big endian byte order (high byt...
	If your processor uses big endian byte order, you must swap the low and high byte for each 16 bit...
	If you are not sure about the byte ordering technique used by your processor, please consult your...
	TRACe:DATA:CHECk:TABLe?
	TRACe:DATA:CHECk:STATe?
	TRACe:DATA:FCRetloss?
	TRACe:DATA:LANDmark:ADD
	TRACe:DATA:LANDmark:DELete
	TRACe:DATA:LINE?

	NOTE start + (range*width) must be less than the number of data points
	range must be greater than or equal to 4
	width must be greater than 0
	NOTE TRAC:DATA:LINE? returns blocks of unsigned short (16-bit) data in Intel little endian byte o...
	Some processor architectures (such as HP PA-Risc or Motorola) use bug endian byte order (high byt...
	If your processor uses big endian byte order, you must swap the low and high byte for each 16 bit...
	If you are not sure about the byte ordering technique used by your processor, please consult your...
	TRACe:DATA:TABLe?
	TRACe:DATA:TABLe:LOCK
	TRACe:DATA:TABLe:LOCK?
	TRACe:DATA:TORL?
	TRACe:DATA:VALue?

	NOTE The maximum value of <sample point> is determined by trac:poin?
	TRACe:DELete
	TRACe:DELete:ALL
	TRACe:FEED:CONTrol

	NOTE The current trace receives all measurement data and therefore will be overwritten with every...
	TRACe:FEED:CONTrol?
	TRACe:FREE?
	TRACe:POINts
	TRACe:POINts?


	Mass Storage, Display, and Print Functions
	5.1 Display Operations – The DISPlay Subsystem
	DISPlay:BRIGhtness
	DISPlay:BRIGhtness?
	DISPlay:CONTrast
	DISPlay:CONTrast?
	DISPlay:ENABle
	DISPlay:ENABle?
	DISPlay[:WINDow]:GRAPhics:COLor
	DISPlay[:WINDow]:GRAPhics:COLor?
	DISPlay[:WINDow]:GRAPhics:COLor?

	DISPlay[:WINDow]:GRAPhics:LTYPe
	DISPlay[:WINDow]:GRAPhics:LTYPe?
	DISPlay[:WINDow]:TEXT:DATA
	DISPlay[:WINDow]:TEXT:DATA?
	DISPlay[:WINDow]:X:SCALe
	NOTE You must send this command before you perform any zooming operations.
	The DISP ... :PDIV/? commands described below only work in AROund mode.
	DISPlay[:WINDow]:X:SCALe?
	DISPlay[:WINDow]:X[:SCALe]:PDIVision

	NOTE This command only works in AROund mode (see DISP:X:SCAL).
	DISPlay[:WINDow]:X[:SCALe]:PDIVision?

	NOTE This command only works in AROund mode (see DISP:X:SCAL).
	DISPlay[:WINDow]:Y[:SCALe]:PDIVision

	NOTE This command only works in AROund mode (see DISP:X:SCAL).
	DISPlay[:WINDow]:Y[:SCALe]:PDIVision?

	NOTE This command only works in AROund mode (see DISP:X:SCAL).

	5.2 Print Operations – The HCOPy Subsystem
	HCOPy:ABORt
	HCOPy:DESTination
	HCOPy:DESTination?
	HCOPy[:IMMediate]
	HCOPy:ITEM:ALL[:IMMediate]
	HCOPy:ITEM[:WINDow][:IMMediate]
	HCOPy:ITEM[:WINDow]:STATe
	HCOPy:ITEM[:WINDow]:STATe?
	HCOPy:ITEM[:WINDow]:TEXT[:IMMediate]
	HCOPy:ITEM[:WINDow]:TEXT:STATe
	HCOPy:ITEM[:WINDow]:TEXT:STATe?
	HCOPy:ITEM[:WINDow]:TRACe[:IMMediate]
	HCOPy:ITEM[:WINDow]:TRACe:STATe
	HCOPy:ITEM[:WINDow]:TRACe:STATe?
	HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe
	HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe?
	HCOPy:PAGE:SIZE
	HCOPy:PAGE:SIZE?

	5.3 File Operations – The MMEMory Subsystem
	MMEMory:CATalog?
	MMEMory:CDIRectory
	MMEMory:CDIRectory?
	MMEMory:COPY:FILE
	MMEMory:DELete
	MMEMory:FREE
	MMEMory:FREE?
	MMEMory:INITialize
	MMEMory:LOAD:STATe, :LOAD:TRACe
	MMEMory:LOAD:FILE?
	MMEMory:MDIRectory
	MMEMory:MSIS
	MMEMory:MSIS?
	MMEMory:NAME
	MMEMory:NAME?
	MMEMory:SAVE:FILE
	MMEMory:STORe:STATe, :STORe:TRACe
	MMEMory:STORe:TRACe:REVision
	NOTE Bellcore revision 1.1 conforms to standards, but you may need to use Bellcore revision 1.0 f...
	MMEMory:STORe:TRACe:REVision?


	Programming Examples
	6.1 How to Connect your OTDR to a PC
	1 Connect the OTDR serial port to the serial interface of the PC. Use an HP 24542U cable or an eq...
	NOTE For more information about attaching cables, consult the appropriate User’s Guide:
	Mini-OTDR User’s Guide (E6000-91011), OTDR User’s Guide (E4310- 91011). or Rack OTDR User’s Guide...
	2 If you have no available cable, you can configure your own, according to the specifications lis...
	Table 6-1 Cable configuration for connection to a PC

	How to set the Instrument Configuration
	3 If the instrument is not also configured at your PC’s serial interface, set the following confi...


	NOTE This is the default configuration, so you should only need to send these commands if the ins...
	HANDLE InitSerial( int baudrate )
	{
	static HANDLE hSer = CreateFile(
	INTERFACE, // use COM1 / Serial A
	GENERIC_READ | GENERIC_WRITE,
	// open for read & write access
	0, NULL,
	OPEN_EXISTING,
	// well, hopefully ... :-)
	0, NULL );
	if(!hSer)
	{
	return NULL;
	}
	// configure the interface ...
	DCB dcb;
	COMMTIMEOUTS commtimeout;
	GetCommTimeouts(hSer, &commtimeout);
	commtimeout.ReadIntervalTimeout = 3000;
	commtimeout.ReadTotalTimeoutMultiplier = 200;
	commtimeout.WriteTotalTimeoutMultiplier = 200;
	commtimeout.WriteTotalTimeoutConstant = 3000;
	GetCommState(hSer, &dcb);
	dcb.DCBlength = sizeof(dcb);
	dcb.BaudRate = baudrate;
	dcb.ByteSize = 8;
	dcb.Parity = 0;
	dcb.StopBits = 1;
	dcb.fBinary = 1;
	dcb.fParity = 0 ;
	dcb.fOutX = 0;
	dcb.fInX = 0;
	dcb.fDtrControl = DTR_CONTROL_DISABLE;
	dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control
	SetCommState(hSer, &dcb);
	SetCommTimeouts(hSer, &commtimeout);
	ClearCommBreak(hSer);
	PurgeComm(hSer,
	PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
	return hSer;
	}

	Figure 6-1 Instrument configuration - example

	6.2 How to Connect with a Terminal Program
	1 Start a terminal program on the PC, for example terminal.exe (Win 3.11 or Windows�NT), or hyper...
	2 Set the transmission parameters in the terminal program as listed in Table 6-2:
	Table 6-2 Transmission parameters

	3 Send a test command in terminal mode to the OTDR:
	4 You should see a response, telling you the identity of your OTDR.
	5 Close the terminal program on the PC.


	6.3 Using a Program to Connect to the OTDR
	1 Send a new line ("\n")
	2 Send *idn? to check the identity of the OTDR
	3 Check the response to the *idn? query.
	4 If you do not receive an appropriate response, repeat steps 1 to 3 until you receive the correc...

	// write query
	sprintf (txtbuffer, "\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"*IDN?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// read response
	ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
	if(cnt == 0 || strlen(txtbuffer) == 0)
	{
	printf("SCPI query failed, exiting!\n");
	CloseHandle(hSerial);
	return;
	}
	// print result (in txtbuffer)
	printf("Connected to: %s\n", txtbuffer);
	Figure 6-2 Connection check - example
	5 If the response is still incorrect, make the following checks:
	How to check the connection
	6 Send a break
	7 Close the device and reopen it.
	8 Repeat steps 1 to 4.



	6.4 How to Send Commands and Queries
	NOTE For more information about SCPI, please consult Chapter�1 “Introduction to Programming”.
	The SCPI commands specific to OTDRs are listed in Chapter�2 “Specific Commands”, and explained in...
	Commands
	Queries
	sprintf(txtbuffer,"*IDN?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// read response
	ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);

	Figure 6-3 Query - example
	Blocks transfer
	// read the trace data ...
	sprintf(txtbuffer,"TRACE:DATA?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// now comes the data: e.g. #48000.... which means:
	// | 4 digits following to tell the number
	// of bytes
	// |||| 8000 bytes following, containing
	// 4000 trace pts
	cnt=0;
	while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
	ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
	header[1]=0;
	numbytes = atoi(header);
	ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
	header[cnt] = 0;
	numbytes = atoi(header);
	printf("Reading %d points of trace data ...\n", numbytes/2);
	// 1 point = 16 bit unsigned short
	ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
	ReadFile(hSerial, header, 15, &cnt, 0); // read rest: <END>\n

	Figure 6-4 Blocks transfer - example

	6.5 Common Tasks
	How to Initialize the Instrument
	1 Connect to the instrument,
	2 Clear the error queue.
	3 Check the instrument id


	How to Set Up an OTDR Measurement
	4 Set up the measurement parameters.
	5 Select the OTDR screen (Mini-OTDR and Rack OTDR only):

	How to Run a Measurement
	6 Start the measurement
	7 Check whether the measurement is still running

	How to Scan a Trace
	8 Send the command prog:expl:exec "scan"

	How to Process a Trace
	9 Print the Trace
	10 Save the Trace

	How to Upload a Bellcore File from the current trace
	11 Upload the file from the OTDR
	12 Read in the first character
	13 Read in the next character
	14 Read in the next m characters
	15 Read in the next n data bytes, and store them.
	16 Read until the final <END>.
	17 Check that there have been no errors.

	// now comes the data: e.g. #48000.... which means:
	// | 4 digits following to tell the number
	// of bytes
	// |||| 8000 bytes following, containing
	// 4000 trace pts
	cnt=0;
	while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
	ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
	header[1]=0;
	numbytes = atoi(header);
	ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
	header[cnt] = 0;
	numbytes = atoi(header);
	printf("Reading %d points of trace data ...\n", numbytes/2);
	// 1 point = 16 bit unsigned short
	ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
	ReadFile(hSerial, header, 15, &cnt, 0); // read rest: <END>\n
	// write the data to the console ...
	for(unsigned int i=0; i<numbytes/2; i++)
	{
	printf("idx: %d, value: %d\n", i, tracebuf[i]);
	}
	Figure 6-5 Uploading a Bellcore file - example

	6.6 Advanced Topics
	How to Download a Bellcore File
	1 Download a specified file to the OTDR

	How to Use the Power Meter and Source Mode
	1 Select source mode
	2 Reset the reference power
	3 Set the power meter display to absolute power level readout
	4 Select Watts (W) as the readout unit.
	5 Start a measurement on the power meter.
	6 Read the detected wavelength and power.


	How to Store Traces on Other Devices
	1 Select a new storage device.
	2 Check that the device has been changed correctly.
	3 Check that there is enough free disk space.
	4 Reclaim extra disk space, if required (Mini-OTDR and Rack OTDR only).


	NOTE MMEM:FREE replaces internal disk space only (not, for example, for the Flash Disk or Floppy ...

	6.7 SCPI data transfer between PC and OTDR
	NOTE TRAC:DATA? and TRAC:DATA:LINE? returns blocks of unsigned short (16-bit) data in Intel littl...
	Some processor architectures (such as HP PA-Risc or Motorola) use big endian byte order (high byt...
	If your processor uses big endian byte order, you must swap the low and high byte for each 16 bit...
	If you are not sure about the byte ordering technique used by your processor, please consult your...
	/* ------------------------------------------------------------------------------------
	* Module: demoapp.cpp *
	* Description: application to demonstrate a SCPI data transfer between PC<->OTDR *
	* Copyright: 12/02/1996 Hewlett-Packard GmbH *
	* NOTE: This application is not supported by HP! HP cannot be held *
	* responsible for any problems/damages caused by this program! *
	* *
	* Compile: Compile this program as a 32Bit Console Application under Win95/NT. *
	* We recommend a struct member byte alignment of 2 bytes. *
	* -----------------------------------------------------------------------------------*/
	#include <windows.h>
	#include <stdio.h>
	#include <string.h>
	#define INTERFACE "COM1"
	#define MAXNUMBYTES 255
	#define TRLEN 16512
	HANDLE InitSerial( int baudrate )
	{
	static HANDLE hSer = CreateFile(
	INTERFACE, // use COM1 / Serial A
	GENERIC_READ | GENERIC_WRITE, // open for read & write access
	0, NULL,
	OPEN_EXISTING, // well, hopefully ... :-)
	0, NULL );
	if(!hSer)
	{
	return NULL;
	}
	// configure the interface ...
	DCB dcb;
	COMMTIMEOUTS commtimeout;
	GetCommTimeouts(hSer, &commtimeout);
	commtimeout.ReadIntervalTimeout = 3000;
	commtimeout.ReadTotalTimeoutMultiplier = 200;
	commtimeout.WriteTotalTimeoutMultiplier = 200;
	commtimeout.WriteTotalTimeoutConstant = 3000;
	GetCommState(hSer, &dcb);
	dcb.DCBlength = sizeof(dcb);
	dcb.BaudRate = baudrate;
	dcb.ByteSize = 8;
	dcb.Parity = 0;
	dcb.StopBits = 1;
	dcb.fBinary = 1;
	dcb.fParity = 0 ;
	dcb.fOutX = 0;
	dcb.fInX = 0;
	dcb.fDtrControl = DTR_CONTROL_DISABLE;
	dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control
	SetCommState(hSer, &dcb);
	SetCommTimeouts(hSer, &commtimeout);
	ClearCommBreak(hSer);
	PurgeComm(hSer, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
	return hSer;
	}
	void main(int argc, char** argv)
	{
	int baudrate=19200; // default value for baudrate
	HANDLE hSerial=NULL; // windows handle for interface
	char txtbuffer[MAXNUMBYTES+1]; // ascii buffer for commands/ascii queries
	char header[16]; // buffer to read the binary header into
	unsigned short tracebuf[TRLEN]; // binary buffer for trac:data? query
	unsigned long cnt; // number of bytes actually written/read
	unsigned long numbytes; // number of bytes to write/read
	// if argc>1, take argv[1] as the current baudrate
	if(argc>1)
	{
	baudrate = atoi(argv[1]);
	if(baudrate < 1200 || baudrate > 115200) baudrate = 19200;
	}
	// initialize the interface ...
	printf("Setting baudrate to %d!\n", baudrate);
	hSerial = InitSerial(baudrate);
	if(!hSerial)
	{
	printf("Failed to open %s, exiting!\n", INTERFACE);
	return;
	}
	// now start communicating ...
	sprintf(txtbuffer,"*CLS\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"*IDN?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
	if(cnt == 0 || strlen(txtbuffer) == 0)
	{
	printf("SCPI query failed, exiting!\n");
	CloseHandle(hSerial);
	return;
	}
	printf("Connected to: %s\n", txtbuffer);
	// setting measurement parameters ...
	sprintf(txtbuffer,"SOURCE:RANGE:START 0\n"); // measurement start
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"SOURCE:RANGE:SPAN 10km\n"); // measurement span
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"SOURCE:PULSE:WIDTH 100ns\n"); // pulsewidth
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	sprintf(txtbuffer,"SOURCE:WAVELENGTH 1310nm\n"); // wavelength
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// start the measurement ...
	printf("Starting measurement ...\n");
	sprintf(txtbuffer,"INIT\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	Sleep(15000); // give it 10s to run + 5s for init ...
	// stop the measurement ...
	printf("Stopping measurement ...\n");
	sprintf(txtbuffer,"ABORT\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	Sleep(1000); // wait a little for things to settle ...
	// read the trace data ...
	sprintf(txtbuffer,"TRACE:DATA?\n");
	numbytes = strlen(txtbuffer);
	WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
	// now comes the data: e.g. #48000.... which means:
	// | 4 digits following to tell the number of bytes
	// |||| 8000 bytes following, containing 4000 trace pts
	cnt=0;
	while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
	ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
	header[1]=0;
	numbytes = atoi(header);
	ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
	header[cnt] = 0;
	numbytes = atoi(header);
	printf("Reading %d points of trace data ...\n", numbytes/2);
	ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
	ReadFile(hSerial, header, 15, &cnt, 0); // read rest: <END>\n
	// write the data to the console ...
	for(unsigned int i=0; i<numbytes/2; i++)
	{
	printf("idx: %d, value: %d\n", i, tracebuf[i]);
	}
	// close the interface
	CloseHandle(hSerial);
	return;
	}



	The VEE Driver
	A.1 What is HP VEE�?
	NOTE This appendix assumes that you are using Windows�95. If you are using Windows�NT, please rep...
	Windows�95 and Windows NT are registered trademarks of Microsoft corporation.
	Using the RS232 port
	1 Select Instrument Manager from the IO menu.
	2 Double-click on the Add button to bring up the Device Configuration screen.
	3 Enter the following information:
	4 Press Advanced I/O Config, and select the hpotdr plug&play Driver from a drop down list.



	NOTE If you do not see this driver in the list, it has not been installed properly.
	5 If you are planning to use the COMx port in the machine, specify the address of the instrument ...
	6 Select whether Reset and Instrument Name Check should be performed whenever VEE opens the instr...
	7 Return to the Instrument Manager screen, and select OK to save the configuration.


	A.2 How to Install HP VEE
	1 Press Yes to continue.
	Figure A-1 VXIplug&play window
	2 Ignore this message, and press Yes to continue.
	NOTE If HP VEE is already installed on your system, you see a message asking you if you want to u...
	Press Yes, if required, then wait until you see a message telling you that the uninstall has been...
	3 Close these programs and press Next> to continue.

	NOTE If you do not have VISA installed, you see a message advising you to install VISA.
	Press Cancel to temporarily exit this installation procedure; install VISA on your PC, then run O...
	4 Select any or all of Read Me, Help and Uninstall, then press Next> to continue.


	Figure A-2 HP VEE - Install options
	5 Select the default, VXIPNP, or choose a folder that you want. Press Next> to continue.
	6 Press Finish to complete installation, viewing the Readme file if you wish.


	A.3 Features of the HP OTDR VEE Driver
	A.4 Directory Structure
	A.5 Opening an Instrument Session
	A.6 Closing an Instrument Session
	A.7 VISA Data Types and Selected Constant Definitions
	NOTE You can find a partial list of the type definitions and constant definitions for the visatyp...

	A.8 Error Handling
	1 Declare a variable to contain the function completion code.
	2 Enable automatic instrument error checking following each function call.
	3 Check for an error (or event) after each function.
	4 Create a routine to respond to the error or event.


	A.9 Introduction to Programming
	Selecting Functions
	Application Functions
	Subsystem Functions
	Passthrough Functions
	Utility Functions

	Example Programs
	LabView
	NOTE You must use the 32-bit version of the HP OTDR driver with LabVIEW 4.0.
	NOTE LabView is a trademark of National Instruments Corporation
	LabWindows

	NOTE LabWindows is a trademark of National Instruments Corporation

	A.10 VISA-specific information
	Instrument Addresses
	Callbacks

	A.11 Using the HP OTDR VEE Driver in Application Development Environments
	Microsoft Visual C++ 4.0 (or higher) and Borland C++ 4.5 (or higher)
	Microsoft Visual Basic 4.0 (or higher)
	HP VEE 3.2 (or higher)
	LabWindows CVI/ (R) 4.0 (or higher)

	A.12 Online information
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


